Enhanced stability and mechanical strength of sodium alginate composite films

2017 ◽  
Vol 160 ◽  
pp. 62-70 ◽  
Author(s):  
Sijun Liu ◽  
Yong Li ◽  
Lin Li
Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 3079-3091
Author(s):  
Libo Chang ◽  
Zhiyuan Peng ◽  
Tong Zhang ◽  
Chuying Yu ◽  
Wenbin Zhong

Wood-inspired HCNF@Lig introduced into MXenes constructing a nacre-like material with high mechanical strength and excellent flexibility used as a flexible supercapacitor.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89083-89091 ◽  
Author(s):  
Huijuan Zhang ◽  
Xianjuan Pang ◽  
Yuan Qi

A pH-sensitive and mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel was designed and prepared. The composite semi-IPN hydrogel showed superior mechanical strength and pH-dependent swelling behavior.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2882
Author(s):  
Wen-Chi Lu ◽  
Fu-Sheng Chuang ◽  
Manikandan Venkatesan ◽  
Chia-Jung Cho ◽  
Po-Yun Chen ◽  
...  

The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress–strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2–24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1476 ◽  
Author(s):  
Ji ◽  
Zhang ◽  
Zhang ◽  
Quan ◽  
Huang ◽  
...  

Highly luminescent silicon quantum dots (SiQDs) were prepared via one-pot hydrothermal route. Furthermore, the optimal synthetic conditions, dependence of the emission spectrum on the excitation wavelength and fluorescent stability of SiQDs were investigated by fluorescence spectroscopy. SiQDs exhibited bright blue fluorescence, and photoluminescence (PL) lifetime is 10.8 ns when excited at 325 nm. The small-sized SiQDs (~3.3 nm) possessed uniform particle size, crystal lattice spacing of 0.31 nm and silicon (111), (220) crystal planes. Luminescent SiQDs/sodium alginate (SA)-carboxymethylcellulose sodium (CMC) nanocomposite bio-polymer films were successfully fabricated by incorporating SiQDs into the SA-CMC matrix. Meanwhile, SiQDs not only impart strong fluorescence to the polymer, but also make the composite films have favorable toughness.


2014 ◽  
Vol 541-542 ◽  
pp. 49-56 ◽  
Author(s):  
Qiao Lei ◽  
Zhi Ying Huang ◽  
Jia Zhen Pan ◽  
Jian Qiang Bao ◽  
Qian Nan Xun

Effects of sodium alginate on properties of WPI-NaCas composite films optimized by previous uniform design experiments were investigated. Films were prepared with different concentrations (1%, 2%, 3%) and ratios (1:0, 5:1, 3:1, 1:1, 1:3, 1:5, 0:1, ratio of composite protein solution to sodium alginate solution) of sodium alginate additions. Results suggested increases in water solubility of films and middle diameter, volume-length mean diameter and area-length mean diameter of film-forming solutions. Addition of sodium alginate decreased the gas and water vapor barrier properties of composite films, however, their mechanical properties could be improved by proper usage. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope analysis indicated that protein and sodium alginate presented well interaction and compatibility.


Sign in / Sign up

Export Citation Format

Share Document