scholarly journals Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate–Functionalized Waterborne Polyurethane

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2882
Author(s):  
Wen-Chi Lu ◽  
Fu-Sheng Chuang ◽  
Manikandan Venkatesan ◽  
Chia-Jung Cho ◽  
Po-Yun Chen ◽  
...  

The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress–strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2–24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 628
Author(s):  
Inga Matulyte ◽  
Giedre Kasparaviciene ◽  
Jurga Bernatoniene

Essential oils are volatile liquids which evaporate and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect nutmeg essential oil from environmental factors by encapsulation (shell material, sodium alginate) and determine the influence of crosslinker concentration (2%, 5% calcium chloride), different emulsifiers (polysorbate 80, sucrose esters), and magnesium aluminometasilicate on microcapsule physical parameters, encapsulation efficiency (EE), swelling index (SI), and other parameters. Nutmeg essential oil (NEO)-loaded calcium alginate microcapsules were prepared by extrusion. The swelling test was performed with and without enzymes in simulated gastric, intestinal, and gastrointestinal media. This study shows that the crosslinker concentration has a significant influence on EE, with 2% calcium chloride solution being more effective than 5%, and capsules being softer with 2% crosslinker solution. Using sucrose esters, EE is higher when polysorbate 80 is used. The swelling index is nearly three times higher in an intestinal medium without enzymes than in the medium with pancreatin. Microcapsule physical parameters depend on the excipients: the hardest capsules were obtained with the biggest amount of sodium alginate; the largest with magnesium aluminometasilicate. Sucrose esters and magnesium aluminometasilicate are new materials used in extrusion.


2020 ◽  
Vol 23 (7) ◽  
pp. 587-598 ◽  
Author(s):  
Ahmed Refaat ◽  
Hanan Elhaes ◽  
Nabila S. Ammar ◽  
Hanan S. Ibrahim ◽  
Medhat Ibrahim

Aim and Objective: Wastewater treatment/remediation is a very important process that has a great environmental and economic impact. Therefore, it is crucial to innovate different methods to remove pollutants of different sources from wastewater. This work was conducted in order to study the removal of lead (Pb+2) from wastewater using microspheres of composites of sodium alginate, cellulose and chitosan, as well as using a cost-effective green route through composites of sodium alginate and dried water hyacinth. Materials and Methods: Molecular modeling at B3LYP/6-31g(d,p) was utilized to study sodium alginate, cellulose and chitosan. Sodium alginate was cross-linked with calcium chloride to form microspheres, then both sodium alginate/cellulose and sodium alginate/chitosan were also crosslinked as 50/50 to form microspheres. The roots of the aquatic plant water hyacinth in dry form were added to the cross-linked sodium alginate for up to 70%. SEM and FTIR were employed to study the surface of the prepared microspheres and their structures respectively. Atomic absorption spectroscopy was used to study the levels of Pb. Results: Molecular modeling indicated that the blending of such structures enhances their ability to bind with surrounding molecules owing to their ability to form hydrogen bonds. SEM results indicated that homogeneous structures of cellulose and chitosan are deformed when blended with sodium alginate, and FTIR confirmed the proper formation of the desired blends. Microspheres from sodium alginate showed the ability to remove Pb+2 from wastewater. SEM indicated further deformation in the morphology with the roughness of sodium alginate/water hyacinth microspheres, while FTIR confirmed the uniform matrices of the microspheres. The removal of Pb+2 was enhanced because of the addition of dried water hyacinth's roots. Conclusion: Modeling, experimental and kinetic data highlight sodium alginate/water hyacinth root as a green route to remediate Pb+2 from wastewater.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1666
Author(s):  
Stefanos Hatzilazarou ◽  
Stefanos Kostas ◽  
Theodora Nendou ◽  
Athanasios Economou

The present study demonstrates the potential of the alginate encapsulation of shoot tips and nodal segments of Gardenia jasminoides Ellis, the short-term cold storage of artificial seeds and subsequent successful conversion to desirable, uniform and genetically stable plantlets. Shoot tips and first-node segments below them, derived from shoots of in vitro cultures, responded better than second-to-fourth-node segments on agar-solidified Murashige and Skoog (MS) nutrient medium and thus, they were used as explants for alginate encapsulation. Explant encapsulation in 2.5% sodium alginate in combination with 50 mM of calcium chloride resulted in the production of soft beads, while hardening in 100 mM of calcium chloride formed firm beads of uniform globular shape, suitable for handling. The addition of liquid MS nutrient medium in the sodium alginate solution doubled the subsequent germination response of the beads. The maintenance of alginate beads under light favored their germination response compared to maintenance in darkness. Encapsulated shoot tip explants of gardenia, which were stored at 4 °C for 4, 8 or 12 weeks, showed a gradual decline in their regeneration response (73.3, 68.9, 53.3%, respectively), whereas, non-encapsulated explants (naked), stored under the same time durations of cold conditions, exhibited a sharp decline in regeneration response up to entirely zeroing (48.9, 11.1, 0.0%, respectively). Shoots, derived from 12-week cold-stored encapsulated explants, were easily rooted in solid MS nutrient medium with the addition of 0.5 μM of Indole-3-acetic acid (IAA) and after transplantation of the rooted plantlets individually to pots containing a peat–perlite (3:1, v/v) substrate, they were successfully acclimatized in the greenhouse under the gradual reduction of 75 or 50% shading with survival rates of 95–100%. The genetic stability of the acclimatized plantlets was assessed and compared with the mother plant using inter simple sequence repeat (ISSR) markers. ISSR analysis confirmed that all regenerated plantlets were genetically identical to the mother plant. This procedure of artificial seed production could be useful for the short-term storage of germplasm and the production of genetically identical and stable plants as an alternative method of micropropagation in Gardenia jasminoides.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Amitava Ghosh ◽  
Prithviraj Chakraborty

Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects.Methods. Ionotropic Gelation technique was adopted employing 32Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and Acrycoat E30D (copolymer) dispersion.Result. Sodium alginate was predominant over Acrycoat E30D in all batches. Nonadditives or interaction was observed to be insignificant. Multiple regressions produced second-order polynomial equation, and the predictive results obtained were validated with high degree of correlation. Thein vivostudy applauded that optimized calcium alginate micropellets of frusemide can produce a much greater diuretic effect over an extended period of 24 hours.Conclusion. This study reveals that the potential of a single dose of the mathematically optimized micro pellets of frusemide formulation is sufficient in the management of peripheral edema and ascites in congestive heart failure and as well in the treatment of chronic hypertension, leading to better patient compliance, and can be produced with minimum experimentation and time, proving far more cost-effective formulation than the conventional methods of formulating dosage forms.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5780-5793
Author(s):  
Ji-Soo Park ◽  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Eun-Ah Lee ◽  
Azelia Wulan Cindradewi ◽  
...  

Cellulose nanocrystals (CNCs) were wet-spun in a coagulation bath for the fabrication of microfilaments, and the effect of sodium alginate (AL) addition on the wet-spinnability and properties of the microcomposite filament was investigated. The CNC suspension exhibited excellent wet-spinnability in calcium chloride (CaCl2) solution, and the addition of AL in CNC suspension resulted in the enhancement of the wet-spinnability of CNCs. As the AL content increased from 3% to 10%, the average diameter of the microcomposite filament decreased, and its tensile properties deteriorated. The increased spinning rate caused an increase in the orientation index of CNCs, resulting in an improvement in the tensile properties of the microcomposite filament.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89083-89091 ◽  
Author(s):  
Huijuan Zhang ◽  
Xianjuan Pang ◽  
Yuan Qi

A pH-sensitive and mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel was designed and prepared. The composite semi-IPN hydrogel showed superior mechanical strength and pH-dependent swelling behavior.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


2015 ◽  
Vol 2 (1) ◽  
pp. 118-120
Author(s):  
Durgha H ◽  
Ramya G ◽  
Gogul Ramanth M ◽  
Thirugnanasampandan R

Young nodal explants (0.5-1cm) of Salvia sclarea L. was used for synthetic seed preparation.Synthetic seeds were prepared using 5% sodium alginate and 1.11% calcium chloride. Seed germination was observed on MS medium fortified with 1.4µM GA3+4.4µM BA after twenty days of culture. Further multiple shoot induction was observed after fifteen days of shootinduction.


Sign in / Sign up

Export Citation Format

Share Document