Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(L-lactic acid) bionanocomposites for green packaging

2019 ◽  
Vol 203 ◽  
pp. 275-284 ◽  
Author(s):  
Le Li ◽  
Rui-Ying Bao ◽  
Tao Gao ◽  
Zheng-Ying Liu ◽  
Bang-Hu Xie ◽  
...  
2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


2018 ◽  
Vol 12 (6) ◽  
pp. 543-555 ◽  
Author(s):  
S. Montes ◽  
A. Etxeberria ◽  
V. Mocholi ◽  
A. Rekondo ◽  
H. Grande ◽  
...  

2016 ◽  
Vol 19 (4) ◽  
pp. 58-65
Author(s):  
Ha Thi Thai La

In this research, the PLA-diol were synthesized from lactic acid (LA) and 1.4 butanediols (BD) with a tin octoate Sn(Oct)2 catalyst at a temperature of 180 °C and the pressure 5 mmHg. The structure and properties of PLA-diol are analyzed by the following methods: GPC, 1H-NMR and DSC. As a result, with the change in the content of Sn (Oct)2 from 0.1 to 1.0%, the molecular weight Mn of PLA - diol increased gradually from 4.119,2 to 7.359,6 g / mol . In addition, the BD content increased from 2.0% to 5.0%, the average molecular weight of the product decreased gradually from 7.536,9 g / mol to 4.735 g / mol, respectively. This change will affect the ability to use PLA-diol in the next denaturation research to apply in the field of biodegradable polymer such as copolymer with polyurethane, copolymer with polyethylene glycol diacid, or chain extension with other polymer in a chain reaction,...


Sign in / Sign up

Export Citation Format

Share Document