Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials

2021 ◽  
Vol 260 ◽  
pp. 117778
Author(s):  
Yixin Xu ◽  
Xiaoli Liu ◽  
Qixing Jiang ◽  
Dawei Yu ◽  
Yanshun Xu ◽  
...  
2016 ◽  
Vol 190 ◽  
pp. 487-494 ◽  
Author(s):  
Elena Benito-Peña ◽  
Victoria González-Vallejo ◽  
Alberto Rico-Yuste ◽  
Letricia Barbosa-Pereira ◽  
José Manuel Cruz ◽  
...  

2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Iuliana Jipa ◽  
Anicuta Stoica ◽  
Marta Stroescu ◽  
Loredana-Mihaela Dobre ◽  
Tanase Dobre ◽  
...  

AbstractActive packaging materials are the subject of research because their performance exceeds that of traditional packaging. From this class, antimicrobial materials extend the shelf-life of products and reduce the risk of contamination by pathogens. In this paper, new composite materials with antimicrobial properties are obtained by using polyvinyl alcohol and bacterial cellulose powder. Potassium (2E,4E)-hexa-2,4-dienoate was used as the antimicrobial agent. The films thus obtained were characterised using Fourier-transform infrared spectroscopy and scanning electron microscopy. Mass transfer phenomena concerning the release of potassium (2E,4E)-hexa-2,4-dienoate were investigated. The results indicated that the new biocomposite films could be used as antimicrobial packaging materials.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2889
Author(s):  
Miri Klein ◽  
Anat Molad Filossof ◽  
Idan Ashur ◽  
Sefi Vernick ◽  
Michal Natan-Warhaftig ◽  
...  

Sustainable antibacterial–antioxidant films were prepared using in situ graftings of silica nanoparticle (SNP) precursors with covalently attached bioactive agents benzoic acid (ba) or curcumin (cur) on polyvinyl alcohol (PVA). The modified PVA-SNP, PVA-SNP-ba and PVA-SNP-cur films were characterized using spectroscopic, physicochemical and microscopic methods. The prepared films showed excellent antibacterial and antioxidant activity, and increased hydrophobicity providing protection from undesired moisture. The PVA-SNP-ba films completely prevented the growth of the foodborne human pathogen Listeria innocua, whereas PVA-SNP-cur resulted in a 2.5 log reduction of this bacteria. The PVA-SNP-cur and PVA-SNP-ba films showed high antioxidant activity of 15.9 and 14.7 Mm/g TEAC, respectively. The described approach can serve as a generic platform for the formation of PVA-based packaging materials with tailor-made activity tuned by active substituents on silica precursors. Application of such biodegradable films bearing safe bioactive agents can be particularly valuable for advanced sustainable packaging materials in food and medicine.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2790 ◽  
Author(s):  
Amin Babaei-Ghazvini ◽  
Bishnu Acharya ◽  
Darren R. Korber

Finding a practical alternative to decrease the use of conventional polymers in the plastic industry has become an acute concern since industrially-produced plastic waste, mainly conventional food packaging, has become an environmental crisis worldwide. Biodegradable polymers have attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based packaging materials, in particular, have become a recent focus for the biodegradable food packaging sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, obtained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal biomaterial for active packaging as it can be fabricated alone or combined with other polymers as well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have seen growing interest as antimicrobial packaging materials, with several different mechanisms of inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles) bio-nanocomposites in packaging applications are the primary focus of discussion in this review.


2020 ◽  
Vol 21 (3) ◽  
pp. 698 ◽  
Author(s):  
Karolina Kraśniewska ◽  
Sabina Galus ◽  
Małgorzata Gniewosz

Packaging is an integral part of food products, allowing the preservation of their quality. It plays an important role, protecting the packed product from external conditions, maintaining food quality, and improving properties of the packaged food during storage. Nevertheless, commonly used packaging based on synthetic non-biodegradable polymers causes serious environmental pollution. Consequently, numerous recent studies have focused on the development of biodegradable packaging materials based on biopolymers. In addition, biopolymers may be classified as active packaging materials, since they have the ability to carry different active substances. This review presents the latest updates on the use of silver nanoparticles in packaging materials based on biopolymers. Silver nanoparticles have become an interesting component of biodegradable biopolymers, mainly due to their antimicrobial properties that allow the development of active food packaging materials to prolong the shelf life of food products. Furthermore, incorporation of silver nanoparticles into biopolymers may lead to the development of materials with improved physical-mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document