Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films

2020 ◽  
Vol 28 (8) ◽  
pp. 2253-2262
Author(s):  
Omar R. Garcia ◽  
Magda I. Pinzón ◽  
Cristian C. Villa
Polymers ◽  
2015 ◽  
Vol 7 (6) ◽  
pp. 1106-1124 ◽  
Author(s):  
Muhammed Sanyang ◽  
Salit Sapuan ◽  
Mohammad Jawaid ◽  
Mohamad Ishak ◽  
Japar Sahari

2011 ◽  
Vol 124 (5) ◽  
pp. 3695-3703 ◽  
Author(s):  
Marcelo Medre Nobrega ◽  
Juliana Bonametti Olivato ◽  
Maria Victoria Eiras Grossmann ◽  
Evandro Bona ◽  
Fabio Yamashita

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2518
Author(s):  
Gislaine Ferreira Nogueira ◽  
Rafael Augustus de Oliveira ◽  
José Ignacio Velasco ◽  
Farayde Matta Fakhouri

Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6734
Author(s):  
Heidy Lorena Calambas ◽  
Abril Fonseca ◽  
Dayana Adames ◽  
Yaneli Aguirre-Loredo ◽  
Carolina Caicedo

The preparation and characterization of biodegradable films based on starch-PVA-nanoclay by solvent casting are reported in this study. The films were prepared with a relation of 3:2 of starch:PVA and nanoclay (0.5, 1.0, and 1.5% w/v), and glycerol as plasticizer. The nanoclays before being incorporated in the filmogenic solution of starch-PVA were dispersed in two ways: by magnetic stirring and by sonication. The SEM results suggest that the sonication of nanoclay is necessary to reach a good dispersion along the polymeric matrix. FTIR results of films with 1.0 and 1.5% w/v of sonicated nanoclay suggest a strong interaction of hydrogen bond with the polymeric matrix of starch-PVA. However, the properties of WVP, tensile strength, percentage of elongation at break, and Young’s modulus improved to the film with sonicated nanoclay at 0.5% w/v, while in films with 1.0 and 1.5% w/w these properties were even worse than in film without nanoclay. Nanoclay concentrations higher than 1.0 w/v saturate the polymer matrix, affecting the physicochemical properties. Accordingly, the successful incorporation of nanoclays at 0.5% w/v into the matrix starch-PVA suggests that this film is a good candidate for use as biodegradable packaging.


Sign in / Sign up

Export Citation Format

Share Document