Utility of immunofluorescence and electron microscopy in endomyocardial biopsies from patients with unexplained heart failure

2010 ◽  
Vol 19 (4) ◽  
pp. e99-e105 ◽  
Author(s):  
Rosemary C. She ◽  
Elizabeth H. Hammond
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Hsiao ◽  
I Shimizu ◽  
T Wakasugi ◽  
S Jiao ◽  
T Watanabe ◽  
...  

Abstract Background/Introduction Mitochondria are dynamic regulators of cellular metabolism and homeostasis. The dysfunction of mitochondria has long been considered a major contributor to aging and age-related diseases. The prognosis of severe heart failure is still unacceptably poor and it is urgent to establish new therapies for this critical condition. Some patients with heart failure do not respond to established multidisciplinary treatment and they are classified as “non-responders”. The outcome is especially poor for non-responders, and underlying mechanisms are largely unknown. Purpose Studies indicate mitochondrial dysfunction has causal roles for metabolic remodeling in the failing heart, but underlying mechanisms remain to be explored. This study tried to elucidate the role of Mitofusin-1 in a failing heart. Methods We examined twenty-two heart failure patients who underwent endomyocardial biopsy of intraventricular septum. Patients were classified as non-responders when their left-ventricular (LV) ejection fraction did not show more than 10% improvement at remote phase after biopsy. Fourteen patients were classified as responders, and eight as non-responders. Electron microscopy, quantitative PCR, and immunofluorescence studies were performed to explore the biological processes or molecules involved in failure to respond. In addition to studies with cardiac tissue specific knockout mice, we also conducted functional in-vitro studies with neonatal rat ventricular myocytes. Results Twenty-two patients with IDCM who underwent endomyocardial biopsy were enrolled in this study, including 14 responders and 8 non-responders. Transmission electron microscopy (EM) showed a significant reduction in mitochondrial size in cardiomyocytes of non-responders compared to responders. Quantitative PCR revealed that transcript of mitochondrial fusion protein, Mitofusin-1, was significantly reduced in non-responders. Studies with neonatal rat ventricular myocytes (NRVMs) indicated that the beta-1 adrenergic receptor-mediated signaling pathway negatively regulates Mitofusin-1 expression. Suppression of Mitofusin-1 resulted in a significant reduction in mitochondrial respiration of NRVMs. We generated left ventricular pressure overload model with thoracic aortic constriction (TAC) in cardiac specific Mitofusin-1 knockout model (c-Mfn1 KO). Systolic function was reduced in c-Mfn1 KO mice, and EM study showed an increase in dysfunctional mitochondria in the KO group subjected to TAC. Conclusions Mitofusin-1 becomes a biomarker for non-responders with heart failure. In addition, our results suggest that therapies targeting mitochondrial dynamics and homeostasis would become next generation therapy for severe heart failure patients. Funding Acknowledgement Type of funding source: None


1990 ◽  
Vol 97 (3) ◽  
pp. 539-543
Author(s):  
G. Callaini ◽  
M.G. Riparbelli

Centriole and centrosome cycles were examined by indirect immunofluorescence and electron microscopy techniques in the early Drosophila embryo. The centrosomes, which are already divided at interphase, appear as compact spheres during prophase and metaphase, expand and flatten from anaphase to telophase and split into two units in late telophase. Centriole separation starts in late metaphase, becomes evident in anaphase and increases during telophase. Procentrioles appear during the following interphase.


PEDIATRICS ◽  
1979 ◽  
Vol 64 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Harry B. Neustein ◽  
Paul R. Lurie ◽  
Beverly Dahms ◽  
Masato Takahashi

A transvascular endomyocardial biopsy from an infant with cardiomyopathy and chronic congestive heart failure showed abnormal mitochondria when examined by electron microscopy. At necropsy, similar abnormal mitochondria were seen in skeletal muscles, liver, and kidney. The patient's family pedigree revealed several male babies who had cardiac disease and died in infancy. Myocardium obtained at necropsy from three cousins contained mitochondria with abnormalities similar to those from the proband. An X-linked recessive cardiomyopathy seems likely in this family.


Sign in / Sign up

Export Citation Format

Share Document