Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunofluorescence and electron microscopy

1981 ◽  
Vol 10 (1) ◽  
pp. 133-147 ◽  
Author(s):  
�ke Flock ◽  
Herbert C. Cheung ◽  
Britta Flock ◽  
G�ran Utter
Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Author(s):  
Donald A. Winkelmann

The primary role of the interaction of actin and myosin is the generation of force and motion as a direct consequence of the cyclic interaction of myosin crossbridges with actin filaments. Myosin is composed of six polypeptides: two heavy chains of molecular weight 220,000 daltons and two pairs of light chains of molecular weight 17,000-23,000. The C-terminal portions of the myosin heavy chains associate to form an α-helical coiled-coil rod which is responsible for myosin filament formation. The N-terminal portion of each heavy chain associates with two different light chains to form a globular head that binds actin and hydrolyses ATP. Myosin can be fragmented by limited proteolysis into several structural and functional domains. It has recently been demonstrated using an in vitro movement assay that the globular head domain, subfragment-1, is sufficient to cause sliding movement of actin filaments.The discovery of conditions for crystallization of the myosin subfragment-1 (S1) has led to a systematic analysis of S1 structure by x-ray crystallography and electron microscopy. Image analysis of electron micrographs of thin sections of small S1 crystals has been used to determine the structure of S1 in the crystal lattice.


Author(s):  
Ellen Holm Nielsen

In secretory cells a dense and complex network of actin filaments is seen in the subplasmalemmal space attached to the cell membrane. During exocytosis this network is undergoing a rearrangement facilitating access of granules to plasma membrane in order that fusion of the membranes can take place. A filamentous network related to secretory granules has been reported, but its structural organization and composition have not been examined, although this network may be important for exocytosis.Samples of peritoneal mast cells were frozen at -70°C and thawed at 4°C in order to rupture the cells in such a gentle way that the granule membrane is still intact. Unruptured and ruptured cells were fixed in 2% paraformaldehyde and 0.075% glutaraldehyde, dehydrated in ethanol. For TEM (transmission electron microscopy) cells were embedded in Lowicryl K4M at -35°C and for SEM (scanning electron microscopy) they were placed on copper blocks, critical point dried and coated. For immunoelectron microscopy ultrathin sections were incubated with monoclonal anti-actin and colloidal gold labelled IgM. Ruptured cells were also placed on cover glasses, prefixed, and incubated with anti-actin and colloidal gold labelled IgM.


Author(s):  
E. Dupré ◽  
G. Schatten

Sperm of decapod crustaceans are formed by a round or cup-shaped body, a complex acrosome and one a few appendages emerging from the main body. Although this sperm does not have motility, it has some components of the cytoskeleton like microtubules, which are found inside the appendages. Actin filaments have been found in the spike of penaeidae sperms. The actual participation of the crustacean decapod sperm cytoskeleton during fertilization is not well understood. Actin is supposed to play an active role in drawing the penaeidae shrimp sperm closer to the egg after bending of the spike. The present study was aimed at the localization of actin filaments in sperm of the Robinson Crusoe island lobster, Jasus frontalis and in the crayfish Orconectes propincus, by fluorescent probes and low voltage scanning electron microscopy.


1998 ◽  
Vol 79 (05) ◽  
pp. 1034-1040 ◽  
Author(s):  
E. Nitschmann ◽  
L. Berry ◽  
S. Bridge ◽  
M. W. C. Hatton ◽  
M. Richardson ◽  
...  

SummaryWe hypothesised that there are important physiologic differences in arterial wall structure and function with respect to antithrombotic activity in the very young (pre-puberty) compared to adults. Electron microscopy, gel electrophoresis, and activity assays were used to examine differences in aorta structure and function comparing prepubertal rabbits (pups) to adult rabbits. Differences in endothelial function, extracellular matrix structure, proteoglycan (PG) distribution and glycosaminoglycan (GAG) content and function were shown. In both intima and media, total PG, chondroitin sulfate (CS) PG and heparan sulfate (HS) PG content were significantly increased in pups compared to adult rabbits. These findings corresponded to increased concentrations by mass analyses of CS GAG and DS GAG in aortas from pups. There was also a significant increase in antithrombin activity in pups due to HS GAG. In conclusion, differences in both structure and antithrombin activity of aortas from pups compared to adult rabbits suggest that young arteries may have greater antithrombotic potential that is, at least in part, related to increased HS GAG.


1977 ◽  
Vol 23 (3) ◽  
pp. 240-252 ◽  
Author(s):  
J. Boisvert ◽  
T. Yamamoto

Vaccinia virus particles were dissociated into their constituent polypeptides and analysed by sodium dodecyl sulfate (SDS) gel electrophoresis. Thirty-three distinct polypeptide bands were identified and their molecular weights ranged between 11 000 and 150 000 daltons.Specific staining of gels containing polypeptides of dissociated virions revealed the presence of eight glycopeptides. No lipopeptides were detected.Analysis of chemical extracts (urea, guanidine hydrochloride, and alkali treatment) of the virus by SDS gel electrophoresis indicated that a total of 10 to 14 different polypeptides ranging in molecular weights from 11 000 to 70 000 daltons were solubilized.Analysis of detergent extracts and of the remains of extracted viral particles has shown that the detergent Nonidet P-40 (NP-40) solubilized a total of 11 polypeptides of which 6 were glycopeptides. The other detergents sodium deoxycholate (SDC) and cetyl trimethyl ammonium bromide (CTAB) were not as selective, both solubilizing more than 25 of the polypeptides composing the virus. Gel electrophoresis results also indicated that most of the small molecular weight (11 000–70 000 daltons) polypeptides were readily solubilized by NP-40, SDC, and CTAB, while those with molecular weights of 70 000 daltons and higher were not well solubilized.The effects of detergents were also analysed by electron microscopy. Evidence was obtained for subpopulations of viral particles having different susceptibility to detergent extraction.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 301
Author(s):  
Kathrin Malfeld ◽  
Nina Armbrecht ◽  
Holger A. Volk ◽  
Thomas Lenarz ◽  
Verena Scheper

In recent years sensorineural hearing loss was found to affect not exclusively, nor at first, the sensory cells of the inner ear. The sensory cells’ synapses and subsequent neurites are initially damaged. Auditory synaptopathies also play an important role in cochlear implant (CI) care, as they can lead to a loss of physiological hearing in patients with residual hearing. These auditory synaptopathies and in general the cascades of hearing pathologies have been in the focus of research in recent years with the aim to develop more targeted and individually tailored therapeutics. In the current study, a method to examine implanted inner ears of guinea pigs was developed to examine the synapse level. For this purpose, the cochlea is made transparent and scanned with the implant in situ using confocal laser scanning microscopy. Three different preparation methods were compared to enable both an overview image of the cochlea for assessing the CI position and images of the synapses on the same specimen. The best results were achieved by dissection of the bony capsule of the cochlea.


1983 ◽  
Vol 92 (1_suppl) ◽  
pp. 3-12 ◽  
Author(s):  
Tomonori Takasaka ◽  
Hideich Shinkawa ◽  
Kozo Watanuki ◽  
Sho Hashimoto ◽  
Kazutomo Kawamoto

The technique and some preliminary results of the application of high-voltage electron microscopy (HVEM) to the study of inner ear morphology in the guinea pig are reported in this paper. The main advantage of HVEM is that sharp images of thicker specimens can be obtained because of the greater penetrating power of high energy electrons. The optimum thickness of the sections examined with an accelerating voltage of 1,000 kV was found to be between 500 to 800 nm. The sections below 500 nm in thickness often had insufficient contrast, while those above 800 nm were rather difficult to interpret due to overlap of images of the organelles. The whole structure of the sensory hairs from the tip to the rootlet was more frequently observed in the 800-nm thick sections. Thus the fine details of the hair attachment to the tectorial membrane as well as the hair rootlet extension into the cuticular plate could be thoroughly studied in the HVEM. In specimens fixed in aldehyde containing 2% tannic acid, the attachment of the tips of the outer hair cell stereocilia to the tectorial membrane was observed. For the inner hair cells, however, the tips of the hairs were separated from the undersurface of the tectorial membrane. The majority of the rootlets of the outer hair cells terminated at the midportion of the cuticular plate, while most of the inner hair cell rootlets traversed the entire width of the cuticular plate and extended into the apical cytoplasm. These differences in ultrastructural appearance may indicate that the two kinds of hair cells play different roles in the acoustic transduction process. The three-dimensional arrangement of the nerve endings on the hair cells was also studied by the serial thick-sectioning technique in the HVEM. In general, an entire arrangement of the nerve endings was almost completely cut in less than ten 800-nm thick sections instead of the 50- to 100-ultrathin (ie, less than 100 nm) conventional sections for transmission electron microscopy. The present study confirms an earlier report that the first row outer hair cells in the third cochlear turn are innervated by nearly equal numbers of efferent and afferent endings, the average number being nine.


Sign in / Sign up

Export Citation Format

Share Document