Modeling the impact of land use changes on runoff and sediment yield in the Le Sueur watershed, Minnesota using GeoWEPP

CATENA ◽  
2013 ◽  
Vol 107 ◽  
pp. 35-45 ◽  
Author(s):  
Fukhrudin K. Maalim ◽  
Assefa M. Melesse ◽  
Patrick Belmont ◽  
Karen B. Gran
2020 ◽  
Vol 5 (2) ◽  
pp. 194-206
Author(s):  
Carolyne Wanessa Lins de Andrade Farias ◽  
Suzana Maria Gico Lima Montenegro ◽  
Abelardo Antônio de Assunção Montenegro ◽  
José Romualdo de Sousa Lima ◽  
Raghavan Srinivasan ◽  
...  

Land-use change has a significant influence on runoff process of any watershed, and the deepening of this theme is essential to assist decision making, within the scope of water resources management. The study was conducted for Mundaú River Basin (MRB) using the Soil and Water Assessment Tool (SWAT) model. The study aims to assess the issue of land-use change and its effect on evapotranspiration, surface runoff, and sediment yield. Input data like land use, topography, weather, and soil data features are required to undertake watershed simulation. Two scenarios of land use were analyzed over 30 years, which were: a regeneration scenario (referring to use in the year 1987) and another scene of degradation (relating to use in the year 2017). Land use maps for 1987 and 2017 were acquired from satellite images. Overall, during the last three decades, 76.4% of forest was lost in the MRB. The grazing land increased in 2017 at a few more than double the area that existed in 1987. Changes in land use, over the years, resulted in an increase of about 37% in the water yield of MRB. Changes have led to increased processes such as surface runoff and sediment yield and in the decrease of evapotranspiration. The spatial and temporal distribution of land use controls the water balance and sediment production in the MRB.


Author(s):  
Habtamu Assaye Deffersha ◽  
Jan Nyssen ◽  
Jean Poesen ◽  
Hanibal Lemma ◽  
Derege Meshesha ◽  
...  

Land degradation due to soil erosion presents a challenge for sustainable development. We investigated the impact of land use type and land management practices on runoff and sediment yield dynamics in the northwestern highlands of Ethiopia. The study area included 14 zero-order catchments with a surface area ranging from 324 m2 to 1715 m2. V-notch weirs produced from plastic jars were introduced as measuring alternatives that met local constraints. Runoff depth at the weir was registered at 5-min intervals during two rainy seasons in 2018 and 2019. Rainfall was measured using tipping-bucket rain gauges. Runoff samples were collected in 1-L bottles and suspended sediment concentration (SSC) was determined. The mean event runoff coefficient ranged from 3% for forests to 56% for badlands. Similarly, the mean annual sediment yield (SY) was lowest for forests (0.8 Mg ha-1 yr-1) and highest for badlands (43.4 Mg ha-1 yr-1), with significant differences among land use types (14.8 Mg ha-1 yr-1 in cropland, 5.7 Mg ha-1 yr-1 in grazing land, and 2.9 Mg ha-1 yr-1 in plantations). Soil organic matter (SOM) reduced runoff and SY, necessitating the consideration of agronomic and land management practices that enhance SOM. Annual SY decreased exponentially with the rock fragment cover (RFC). In fields where RFC was less than 20%, collecting rock fragments for installing stone bunds resulted in a net increase in SY. Rehabilitating badlands and enhancing SOM content in croplands can substantially reduce catchment SY and, hence considerably contribute to the sustainability of this type of environment.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 881
Author(s):  
Maziar Mohammadi ◽  
Abdulvahed Khaledi Darvishan ◽  
Velibor Spalevic ◽  
Branislav Dudic ◽  
Paolo Billi

Land use change is known as one of the main influencing factors on soil erosion and sediment production processes. The objective of the article is to study on how land use change impacts on soil erosion by using Intensity of Erosion and Outflow (IntErO) as a process-oriented soil erosion model. The study has been conducted under land use changes within the period of 1991–2014 in the Talar watershed located in northern Iran. The GIS environment was used to prepare the required maps including Digital Elevation Model (DEM), geology, land use, soil, and drainage network. The climatology data including average annual precipitation and air temperature as well as the volume of torrential rain were extracted from the data of meteorological stations located inside and around the study watershed. The results indicates that, within the period of 1991–2014, the forest area decreased by 12,478.04 ha (6%), while the other land uses including rainfed agriculture, rangeland, irrigated agriculture, and residential area increased by 7248.25, 4481.05, 476.00, and 273.95 ha, respectively. The estimated outflow with 100 year return interval was 432.14 m3 s−1 in 1991, which increased to 446.91 m3 s−1 in 2014. It can be concluded that the probability of larger and/or more frequent floods waves in the Talar River is expected to increase. In addition, the amount of production of erosion material (gross erosion) in the watershed increased from 1,918,186 to 2,183,558 m3 yr−1, and the real soil losses per year (sediment yield) of the watershed increased from 440,482.4 to 501,421.3 m3 yr−1. The results clearly emphasized how the lack of appropriate land management and planning leads to increase the maximum flow discharge and sediment yield of the watershed.


2019 ◽  
Vol 664 ◽  
pp. 984-994 ◽  
Author(s):  
Peng Shi ◽  
Yan Zhang ◽  
Zongping Ren ◽  
Yang Yu ◽  
Peng Li ◽  
...  

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Dong Han ◽  
Jiajun Qiao ◽  
Qiankun Zhu

Rural-spatial restructuring involves the spatial mapping of the current rural development process. The transformation of land-use morphologies, directly or indirectly, affects the practice of rural restructuring. Analyzing this process in terms of the dominant morphology and recessive morphology is helpful for better grasping the overall picture of rural-spatial restructuring. Accordingly, this paper took Zhulin Town in Central China as a case study area. We propose a method for studying rural-spatial restructuring based on changes in the dominant and recessive morphologies of land use. This process was realized by analyzing the distribution and functional suitability of ecological-production-living (EPL) spaces based on land-use types, data on land-use changes obtained over a 30-year observation period, and in-depth research. We found that examining rural-spatial restructuring by matching the distribution of EPL spaces with their functional suitability can help to avoid the misjudgment of the restructuring mode caused by the consideration of the distribution and structural changes in quantity, facilitating greater understanding of the process of rural-spatial restructuring. Although the distribution and quantitative structure of Zhulin’s EPL spaces have changed to differing degrees, ecological- and agricultural-production spaces still predominate, and their functional suitability has gradually increased. The spatial distribution and functional suitability of Zhulin are generally well matched, with 62.5% of the matched types being high-quality growth, and the positive effect of Zhulin’s spatial restructuring over the past 30 years has been significant. We found that combining changes in EPL spatial area and quantity as well as changes in functional suitability is helpful in better understanding the impact of the national macro-policy shift regarding rural development. Sustaining the positive spatial restructuring of rural space requires the timely adjustment of local actors in accordance with the needs of macroeconomic and social development, and a good rural-governance model is essential.


2020 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Tianshi Pan ◽  
Lijun Zuo ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Feifei Sun ◽  
...  

The implementation of ecological projects can largely change regional land use patterns, in turn altering the local hydrological process. Articulating these changes and their effects on ecosystem services, such as water conservation, is critical to understanding the impacts of land use activities and in directing future land planning toward regional sustainable development. Taking Zhangjiakou City of the Yongding River as the study area—a region with implementation of various ecological projects—the impact of land use changes on various hydrological components and water conservation capacity from 2000 to 2015 was simulated based on a soil and water assessment tool model (SWAT). An empirical regression model based on partial least squares was established to explore the contribution of different land use changes on water conservation. With special focus on the forest having the most complex effects on the hydrological process, the impacts of forest type and age on the water conservation capacity are discussed on different scales. Results show that between 2000 and 2015, the area of forest, grassland and cultivated land decreased by 0.05%, 0.98% and 1.64%, respectively, which reduces the regional evapotranspiration (0.48%) and soil water content (0.72%). The increase in settlement area (42.23%) is the main reason for the increase in water yield (14.52%). Most land use covered by vegetation has strong water conservation capacity, and the water conservation capacity of the forest is particularly outstanding. Farmland and settlements tend to have a negative effect on water conservation. The water conservation capacity of forest at all scales decreased significantly with the growth of forest (p < 0.05), while the water conservation capacity of different tree species had no significant difference. For the study area, increasing the forest area will be an effective way to improve the water conservation function, planting evergreen conifers can rapidly improve the regional water conservation capacity, while planting deciduous conifers is of great benefit to long-term sustainable development.


Sign in / Sign up

Export Citation Format

Share Document