Long-term (11 years) study of water balance, flushing times and water chemistry of a coastal wetland undergoing restoration, Everglades, Florida, USA

CATENA ◽  
2016 ◽  
Vol 144 ◽  
pp. 74-83 ◽  
Author(s):  
Estefania Sandoval ◽  
René M. Price ◽  
Dean Whitman ◽  
Assefa M. Melesse
2012 ◽  
Vol 9 (2) ◽  
pp. 1741-1782 ◽  
Author(s):  
A. D. Clulow ◽  
C. S. Everson ◽  
M. G. Mengistu ◽  
C. Jarmain ◽  
G. P. W. Jewitt ◽  
...  

Abstract. The contribution of freshwater supply from the Mfabeni Mire to Lake St. Lucia during dry periods is important to the survival of certain plant and animal species in the iSimangaliso Wetland Park. This freshwater supply is mainly dependent on the variability of the major components of the water balance, namely rainfall and total evaporation (ET). Attempts to quantify the water balance have been limited through uncertainties in quantifying ET from the Mfabeni Mire. Despite advances in evaporation measurement and modelling from wetlands, there still exists some doubt as to which methods are best suited to characterise wetland ET with most authors suggesting a combination of methods. In this study, the surface renewal (SR) method was successfully used to determine the long-term ET (12 months) from the Mfabeni Mire with calibration using eddy covariance during two window periods of approximately one week each. The SR method was found to be inexpensive, reliable and with low power requirements for unattended operation. The annual ET was lower (900 mm yr−1) than expected, due to cloud cover in summer and low atmospheric demand throughout the year, despite the available water and high windspeeds. Daily ET estimates were compared to the Priestley-Taylor results and a site specific calibration α = 1.0 was obtained for the site. The Priestley-Taylor results agreed well with the actual ET from the surface renewal technique (R2 = 0.96) throughout the 12 month period. A monthly crop factor (Kc) was determined for the standardised FAO-56 Penman-Monteith. However, Kc was variable in some months and should be used with caution for daily ET modelling. These results represent not only some of the first long-term measurements of ET from a wetland in Southern Africa, but also one of the few studies of actual ET in a subtropical peatland in the Southern Hemisphere. The study provides wetland ecologists and hydrologists with guidelines for the use of two internationally applied models for the estimation of wetland ET within a coastal, subtropical environment.


2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI), alongside emerging data analysis techniques, have enabled broader investigations into their dynamics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making periods within the time series sparse and often unusable during meteorologically active seasons. This paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Landsat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination (R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds value to existing satellite missions and provides economic justification for future projects.


2013 ◽  
Vol 155 (3) ◽  
pp. 306-308
Author(s):  
I. G. Bryndina ◽  
N. N. Vasilieva ◽  
Yu. A. Krivonogova ◽  
V. M. Baranov

2014 ◽  
Vol 37 ◽  
pp. 396-411 ◽  
Author(s):  
R.C. Helliwell ◽  
J. Aherne ◽  
T.R. Nisbet ◽  
G. MacDougall ◽  
S. Broadmeadow ◽  
...  

2006 ◽  
Vol 178 (1-4) ◽  
pp. 179-193 ◽  
Author(s):  
Emanuela Manno ◽  
Massimo Vassallo ◽  
Daniela Varrica ◽  
Gaetano Dongarrà ◽  
Sergio Hauser

2021 ◽  
Vol 34 ◽  
pp. 100781
Author(s):  
A. De la Hera-Portillo ◽  
J. López-Gutiérrez ◽  
C. Marín-Lechado ◽  
P. Martínez-Santos ◽  
A. Ruíz-Constán ◽  
...  

2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2014 ◽  
Vol 62 ◽  
pp. 47-57 ◽  
Author(s):  
Wei Liu ◽  
Jia Mi ◽  
Zhihong Song ◽  
Juan Yan ◽  
Jianqiang Li ◽  
...  

Author(s):  
Vadim Yapiyev ◽  
Kanat Samarkhanov ◽  
Dauren Zhumabayev ◽  
Nazym Tulegenova ◽  
Saltanat Jumassultanova ◽  
...  

Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide. Central Asian endorheic basins are among the most affected regions through both climate and human impacts. Here, we used a digital elevation model, digitized bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia (CA), for the period of 1986 to 2016. Based on the analysis of long-term climatic data from meteorological stations, short-term hydrometeorological network observations, gridded climate datasets (CRU) and global atmospheric reanalysis (ERA Interim), we have evaluated the impacts of historical climatic conditions on the water balance of BNNP lake catchments. We also discuss the future based on regional climate model projections. We attribute the overall decline of BNNP lakes to long-term deficit of water balance with lake evaporation loss exceeding precipitation inputs. Direct anthropogenic water abstraction has a minor importance in water balance. However, the changes in watersheds caused by the expansion of human settlements and roads disrupting water drainage may play a more significant role in lake water storage decline. More precise water resources assessment at the local scale will be facilitated by further development of freely available higher spatial resolution remote sensing products. In addition, the results of this work can be used for the development of lake/reservoir evaporation models driven by remote sensing and atmospheric reanalysis data without the direct use of ground observations.


Sign in / Sign up

Export Citation Format

Share Document