Spatial-temporal evolution and driving forces of rainfall erosivity in a climatic transitional zone: A case in Huaihe River Basin, eastern China

CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 104993
Author(s):  
Yinyao Xu ◽  
Hu Sun ◽  
Xu Ji
Author(s):  
Q. Li ◽  
M. Zeng ◽  
H. Wang ◽  
P. Li ◽  
K. Wang ◽  
...  

Abstract. The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Zhengwe Ye ◽  
Zonghua Li

Precipitation data from 30 stations in the Huaihe River basin (HRB), a climatic transitional zone in east China, were used to investigate the spatiotemporal variability and trends of extreme precipitation on multitimescales for the period 1961–2010. Results indicated that (1) the spatial pattern of the annual precipitation, rainy days, extreme precipitation, and maximum daily precipitations shows a clear transitional change from the south (high) to the north (low) in the HR; it confirmed the conclusion that the HRB is located in the transitional zone of the 800 mm precipitation contour in China, where the 800 mm precipitation contour is considered as the geographical boundary of the south and the north. (2) Higher value of the extreme precipitation intensity mainly occurs in the middle of the east and the central part of the basin; it reveals a relatively distinct west-east spatial disparity, and this is not in line with the spatial pattern of the extreme precipitation total, the sum of the precipitation in 95th precipitation days. (3) Annual precipitation of 22 stations exhibits increasing trend, and these 22 stations are located from the central to the northern part. There is no significant trend detected for the seasonal precipitation. The summer precipitation exhibits a larger change range; this might cause the variation of the flood and drought in the HBR. However, the increasing trend in winter precipitation may be beneficial to the relief of winter agricultural drought. Rainy days in 12 stations, mostly located in and around the central northeastern part, experienced significant decreasing trend. Extreme precipitation days and precipitation intensity have increasing trends, but no station with significant change trend is detected for the maximum precipitation of the basin. (4) The spatiotemporal variability in the HRB is mainly caused by the geographic differences and is largely influenced by the interdecadal variations of East Asian Summer Monsoon in eastern China. The output of this paper could provide references for the practical decision making and integrated basin management of Huaihe River basin.


2015 ◽  
Vol 380-381 ◽  
pp. 22-34 ◽  
Author(s):  
Wei Zhang ◽  
Shaoming Pan ◽  
Liguo Cao ◽  
Xun Cai ◽  
Kexin Zhang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1053
Author(s):  
Yuan Yao ◽  
Wei Qu ◽  
Jingxuan Lu ◽  
Hui Cheng ◽  
Zhiguo Pang ◽  
...  

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides more scenarios and reliable climate change results for improving the accuracy of future hydrological parameter change analysis. This study uses five CMIP6 global climate models (GCMs) to drive the variable infiltration capacity (VIC) model, and then simulates the hydrological response of the upper and middle Huaihe River Basin (UMHRB) under future shared socioeconomic pathway scenarios (SSPs). The results show that the five-GCM ensemble improves the simulation accuracy compared to a single model. The climate over the UMHRB likely becomes warmer. The general trend of future precipitation is projected to increase, and the increased rates are higher in spring and winter than in summer and autumn. Changes in annual evapotranspiration are basically consistent with precipitation, but seasonal evapotranspiration shows different changes (0–18%). The average annual runoff will increase in a wavelike manner, and the change patterns of runoff follow that of seasonal precipitation. Changes in soil moisture are not obvious, and the annual soil moisture increases slightly. In the intrayear process, soil moisture decreases slightly in autumn. The research results will enhance a more realistic understanding of the future hydrological response of the UMHRB and assist decision-makers in developing watershed flood risk-management measures and water and soil conservation plans.


2016 ◽  
Vol 31 (4) ◽  
pp. 935-948 ◽  
Author(s):  
Yenan Wu ◽  
Ping-an Zhong ◽  
Bin Xu ◽  
Feilin Zhu ◽  
Biao Ma

Sign in / Sign up

Export Citation Format

Share Document