Synthesis of PtSe catalysts using atmospheric-pressure plasma and their application as counter electrodes for liquid-junction photovoltaic devices

2019 ◽  
Vol 337 ◽  
pp. 126-131 ◽  
Author(s):  
Eunju Sim ◽  
Eunhee Park ◽  
Van-Duong Dao ◽  
Ho-Suk Choi
RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 45662-45667 ◽  
Author(s):  
Chia-Yun Chou ◽  
Haoming Chang ◽  
Hsiao-Wei Liu ◽  
Yao-Jhen Yang ◽  
Cheng-Che Hsu ◽  
...  

A rapid (1 min) APPJ process is successfully developed for processing Pt counter electrodes of DSSCs.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 690 ◽  
Author(s):  
Chia-Chun Lee ◽  
Tzu-Ming Huang ◽  
I-Chun Cheng ◽  
Cheng-Che Hsu ◽  
Jian-Zhang Chen

We characterize the time evolution (≤120 s) of atmospheric-pressure plasma jet (APPJ)-synthesized Pt-SnOx catalysts. A mixture precursor solution consisting of chloroplatinic acid and tin(II) chloride is spin-coated on fluorine-doped tin oxide (FTO) glass substrates, following which APPJ is used for converting the spin-coated precursors. X-ray photoelectron spectroscopy (XPS) indicates the conversion of a large portion of metallic Pt and a small portion of metallic Sn (most Sn is in oxidation states) from the precursors with 120 s APPJ processing. The dye-sensitized solar cell (DSSC) efficiency with APPJ-synthesized Pt-SnOx CEs is improved greatly with only 5 s of APPJ processing. Electrochemical impedance spectroscopy (EIS) and Tafel experiments confirm the catalytic activities of Pt-SnOx catalysts. The DSSC performance can be improved with a short APPJ processing time, suggesting that a DC-pulse nitrogen APPJ can be an efficient tool for rapidly synthesizing catalytic Pt-SnOx counter electrodes (CEs) for DSSCs.


PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2018 ◽  
Vol 677 (1) ◽  
pp. 135-142
Author(s):  
Dong Ha Kim ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
Bhum Jae Shin ◽  
Jae Young Kim ◽  
...  

Author(s):  
Thisara Sandanuwan ◽  
Nayanathara Hendeniya ◽  
D.A.S. Amarasinghe ◽  
Dinesh Attygalle ◽  
Sampath Weragoda

Sign in / Sign up

Export Citation Format

Share Document