Role of the protein kinase CIPK8 in guard cell signalling

Author(s):  
Deirdre H. McLachlan ◽  
Jorg Kudla ◽  
Alistair M. Hetherington
2020 ◽  
Vol 9 (2) ◽  
pp. R14-R27 ◽  
Author(s):  
Giovanni Tulipano

A variety of endocrine and metabolic signals regulate pituitary cell function acting through the hypothalamus-pituitary neuroendocrine axes or directly at the pituitary level. The underlying intracellular transduction mechanisms in pituitary cells are still debated. AMP-activated protein kinase (AMPK) functions as a cellular sensor of low energy stores in all mammalian cells and promotes adaptive changes in response to calorie restriction. It is also regarded as a target for therapy of proliferative disorders. Various hormones and drugs can promote tissue-specific activation or inhibition of AMPK by enhancing or inhibiting AMPK phosphorylation, respectively. This review explores the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the intracellular transduction pathways downstream of endocrine and metabolic signals or drugs affecting pituitary cell function, and its role as a target for drug therapy of pituitary proliferative disorders. The effects of the hypoglycemic agent metformin, which is an indirect AMPK activator, are discussed. The multiple effects of metformin on cell metabolism and cell signalling and ultimately on cell function may be either dependent or independent of AMPK. The in vitro effects of metformin may also help highlighting differences in metabolic requirements between pituitary adenomatous cells and normal cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elena De Marchi ◽  
Federica Baldassari ◽  
Angela Bononi ◽  
Mariusz R. Wieckowski ◽  
Paolo Pinton

Reactive oxygen species (ROS) are a byproduct of the normal metabolism of oxygen and have important roles in cell signalling and homeostasis. An imbalance between ROS production and the cellular antioxidant defence system leads to oxidative stress. Environmental factors and genetic interactions play key roles in oxidative stress mediated pathologies. In this paper, we focus on cardiovascular diseases and obesity, disorders strongly related to each other; in which oxidative stress plays a fundamental role. We provide evidence of the key role played byp66Shcprotein and protein kinase C (PKC) in these pathologies by their intracellular regulation of redox balance and oxidative stress levels. Additionally, we discuss possible therapeutic strategies aimed at attenuating the oxidative damage in these diseases.


2019 ◽  
Author(s):  
Maria Kalliola ◽  
Liina Jakobson ◽  
Pär Davidsson ◽  
Ville Pennanen ◽  
Cezary Waszczak ◽  
...  

AbstractStrigolactones are a group of phytohormones that control shoot branching inArabidopsis thaliana. However, in recent years they have been shown to affect many other plant processes. We previously showed that the strigolactone perception mutantmore axillary branches 2 (max2)has increased susceptibility to plant pathogenic bacteria as a result of more open stomata as well as alterations in hormonal signalling. Here we show that both, strigolactone biosynthesis- (max3andmax4), and perception mutants (max2anddwarf14) are significantly more sensitive toPseudomonas syringaeDC3000. Moreover, in response toP. syringaeinfection, high levels of SA accumulated inmax2and this mutant was ozone sensitive. To search for the mechanisms that could explain pathogen- and ozone sensitivity we performed gene expression analysis and several different assays that explore the function of guard cells and regulation of guard cell signalling.Treatments with GR24 (a strigolactone analogue) resulted in very modest changes in defence-related gene expression. In contrast, guard cell function was clearly impaired inmax2and depending on the assay used, also inmax3, max4andd14mutants. Moreover, stomatal responses to stimuli that cause stomatal closure in wild-type plants (darkness, high CO2and ABA) were analysed in the strigolactone mutants. In darkness both strigolactone biosynthesis and perception mutants showed reduced stomatal closure, whereas the response to high CO2was impaired only inmax2andd14. The response to ABA was not impaired in any of the mutants. To position the role of MAX2 in the guard cell signalling network,max2was crossed with mutants defective in ABA biosynthesis (aba2), in guard cell ABA signalling (ost1) and a scaffold protein required for proper ion channel activity (ghr1). The stomatal conductance of double mutants was consistently higher than the corresponding single mutants, suggesting that MAX2 acts in a signalling pathway that functions in parallel to the well characterized guard cell ABA signalling pathway. We propose that the impaired defence responses ofmax2is related to more open stomata that allows increased entry of bacteria or air pollutants like ozone. Furthermore, as MAX2 appears to act in a specific branch of guard cell signalling (related to CO2signalling), this protein could be one of the elusive components that allow guard cells to distinguish between different environmental conditions.


2010 ◽  
Vol 48 (08) ◽  
Author(s):  
N Azoitei ◽  
GV Pusapati ◽  
A Kleger ◽  
C Brunner ◽  
F Genze ◽  
...  

2013 ◽  
Vol 51 (08) ◽  
Author(s):  
A Becher ◽  
A Staab ◽  
F Genze ◽  
S Bobrovich ◽  
N Azoitei ◽  
...  
Keyword(s):  

1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S63-S64
Author(s):  
A. K. MUKHOPADHYAY ◽  
H. G. BOHNET

Sign in / Sign up

Export Citation Format

Share Document