scholarly journals Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota

Author(s):  
Y. Henry ◽  
J. Overgaard ◽  
H. Colinet
1988 ◽  
Vol 89 (1) ◽  
pp. 39-47 ◽  
Author(s):  
C. Gonzalez ◽  
J. Casal ◽  
P. Ripoll

Mutation in the gene merry-go-round (mgr) of Drosophila causes a variety of phenotypic traits in somatic and germinal tissues, such as polyploid cells, metaphasic arrest, postmeiotic cysts with 16 nuclei, and spermatids with four times the normal chromosome content. The most characteristic phenotype is the appearance of mitotic and meiotic figures where all chromosomes are arranged in a circle. Treatment with anti-mitotic drugs and the phenotype of double mutants mgr asp (asp being a mutation altering the spindle) show that these circular figures need a functional spindle for their formation. These abnormal figures are caused by monopolar spindles similar to those observed after different treatments in several organisms. All mutant traits indicate that mgr performs a function necessary for the correct behaviour of centrosomes, thus opening this organelle to genetic analysis.


2018 ◽  
Author(s):  
Dali Ma ◽  
Maroun Bou-Sleiman ◽  
Pauline Joncour ◽  
Claire-Emmanuelle Indelicato ◽  
Michael Frochaux ◽  
...  

SummaryEukaryotic genomes encode several well-studied buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the gut microbiota, represented by a single Drosophila facultative symbiont, Lactobacillus plantarum (LpWJL), acts also as a broad genetic buffer that masks the contribution of the cryptic genetic variations in the host under nutritional stress. During chronic under-nutrition, LpWJL consistently reduces variation in different host phenotypic traits and ensures robust organ patterning; LpWJL also decreases genotype-dependent expression variation, particularly for development-associated genes. We further demonstrate that LpWJL buffers via reactive oxygen species (ROS) signaling whose inhibition severely impairs microbiota-mediated phenotypic robustness. We thus identified an unexpected contribution of facultative symbionts to Drosophila fitness by assuring developmental robustness and phenotypic homogeneity in times of nutritional stress.


2020 ◽  
Vol 11 (1) ◽  
pp. 79-89 ◽  
Author(s):  
F.H.P. Tan ◽  
G. Liu ◽  
S.-Y.A. Lau ◽  
M.H. Jaafar ◽  
Y.-H. Park ◽  
...  

Alzheimer’s disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia’s relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson’s, Huntington’s and Alzheimer’s diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7’s ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.


2020 ◽  
Vol 8 (8) ◽  
pp. 1119 ◽  
Author(s):  
Naser A. Alsharairi

Research has amply demonstrated that early life dysbiosis of the gut microbiota influences the propensity to develop asthma. The influence of maternal nutrition on infant gut microbiota is therefore of growing interest. However, a handful of prospective studies have examined the role of maternal dietary patterns during pregnancy in influencing the infant gut microbiota but did not assess whether this resulted in an increased risk of asthma later in life. The mechanisms involved in the process are also, thus far, poorly documented. There have also been few studies examining the effect of maternal dietary nutrient intake during lactation on the milk microbiota, the effect on the infant gut microbiota and, furthermore, the consequences for asthma development remain largely unknown. Therefore, the specific aim of this mini review is summarizing the current knowledge regarding the effect of maternal nutrition during pregnancy and lactation on the infant gut microbiota composition, and whether it has implications for asthma development.


2020 ◽  
Vol 295 (52) ◽  
pp. 18625-18637
Author(s):  
Cheng-Jie Duan ◽  
Arnaud Baslé ◽  
Marcelo Visona Liberato ◽  
Joseph Gray ◽  
Sergey A. Nepogodiev ◽  
...  

Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.


2017 ◽  
Vol 74 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Gangsik Han ◽  
Hyo Jung Lee ◽  
Sang Eun Jeong ◽  
Che Ok Jeon ◽  
Seogang Hyun

2017 ◽  
Vol 134 ◽  
pp. 123-134 ◽  
Author(s):  
Sarah J. Harrison ◽  
Jean-Guy J. Godin ◽  
Susan M. Bertram

2017 ◽  
Vol 27 (8) ◽  
pp. 1848-1859 ◽  
Author(s):  
Alyssa Bost ◽  
Soeren Franzenburg ◽  
Karen L. Adair ◽  
Vincent G. Martinson ◽  
Greg Loeb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document