Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes

2021 ◽  
Vol 61 ◽  
pp. 191-202
Author(s):  
Austin C. Hachey ◽  
Dmytro Havrylyuk ◽  
Edith C. Glazer
2020 ◽  
Vol 26 (41) ◽  
pp. 7452-7475 ◽  
Author(s):  
Marta A. Andrade ◽  
Luísa M.D.R.S. Martins

: The development of safe and effective chemotherapeutic agents is one of the uppermost priorities and challenges of medicinal chemistry and new transition metal complexes are being continuously designed and tested as anticancer agents. Scorpionate ligands have played a great role in coordination chemistry, since their discovery by Trofimenko in the late 1960s, with significant contributions in the fields of catalysis and bioinorganic chemistry. Scorpionate metal complexes have also shown interesting anticancer properties, and herein, the most recent (last decade) and relevant scorpionate complexes reported for application in medicinal chemistry as chemotherapeutic agents are reviewed. The current progress on the anticancer properties of transition metal complexes bearing homo- or hetero- scorpionate ligands, derived from bis- or tris-(pyrazol-1-yl)-borate or -methane moieties is highlighted.


2021 ◽  
Vol 1231 ◽  
pp. 129946
Author(s):  
Bushra Naureen ◽  
G.A. Miana ◽  
Khadija Shahid ◽  
Mehmood Asghar ◽  
Samreen Tanveer ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Gehad G. Mohamed ◽  
Walaa H. Mahmoud ◽  
Ahmed M. Refaat

Metal complexes of the 2,2'-(1,3-phenylenebis(diazene-2,1-diyl))bis(4-aminobenzoic acid) diazo ligand (H2L) derived from m-phenylenediamine and p-aminobenzoic acid were synthesized and characterized by different spectral, thermal, and analytical tools. The H2L ligand reacted with the metal ions Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) as 1 : 1 stoichiometry. All complexes displayed an octahedral geometry according to the electronic and magnetic moment measurements. The IR spectra revealed the binding of the azo ligand to the metal ions via two azo nitrogen atoms and protonated carboxylate O in a neutral tetradentate manner. Both IR and 1H NMR spectra documented the involvement of the carboxylate group without proton displacement. The thermal studies pointed out that the complexes had higher thermal stability comparable with that of the free ligand. SEM images revealed the presence of the diazo ligand and its Cd(II) complex in a nanostructure form. The contact angle measurements proved that the Cd(II) complex can be considered as a superhydrophobic material. The molecular and electronic structure of H2L and [Cd(H2L)Cl2].H2O were optimized theoretically, and the quantum chemical parameters were calculated. The biological activities of the ligand, as well as its metal complexes, have been tested in vitro against some bacteria and fungi species. The results showed that all the tested compounds have significant biological activities with different sensitivity levels. The binding between H2L and its Cd(II) complex with receptors of the crystal structure of S. aureus (PDB ID: 3Q8U), crystal structure of protein phosphatase (PPZ1) of Candida albicans (PDB ID: 5JPE), receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), and crystal structure of Escherichia coli (PDB ID: 3T88) was predicted and given in detail using molecular docking.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3508
Author(s):  
Carme Masdeu ◽  
Maria Fuertes ◽  
Endika Martin-Encinas ◽  
Asier Selas ◽  
Gloria Rubiales ◽  
...  

Heterocyclic nitrogen compounds, including fused 1,5-naphthyridines, have versatile applications in the fields of synthetic organic chemistry and play an important role in the field of medicinal chemistry, as many of them have a wide range of biological activities. In this review, a wide range of synthetic protocols for the construction of this scaffold are presented. For example, Friedländer, Skraup, Semmlere-Wolff, and hetero-Diels-Alder, among others, are well known classical synthetic protocols used for the construction of the main 1,5-naphthyridine scaffold. These syntheses are classified according to the nature of the cycle fused to the 1,5-naphthyridine ring: carbocycles, nitrogen heterocycles, oxygen heterocycles, and sulphur heterocycles. In addition, taking into account the aforementioned versatility of these heterocycles, their reactivity is presented as well as their use as a ligand for metal complexes formation. Finally, those fused 1,5-naphthyridines that present biological activity and optical applications, among others, are indicated.


2016 ◽  
Vol 45 (47) ◽  
pp. 19096-19108 ◽  
Author(s):  
Anoop Kumar Saini ◽  
Pratibha Kumari ◽  
Vinay Sharma ◽  
Pradeep Mathur ◽  
Shaikh M. Mobin

Four new metal complexes which demonstrates varying structural motifs from monomeric to dimeric to tetrameric complexes by slightly altering the reaction conditions and their biological applications.


2012 ◽  
Vol 77 (5) ◽  
pp. 627-637 ◽  
Author(s):  
Pal Singh ◽  
Nanda Srivastava

Mononuclear metal complexes of the type [ML1]Cl2 (where, M = = Cu(II), Co(II) or Ni(II) and L1 = ligand) were synthesized by the reaction of a new N4 coordinating ligand, derived from diacetylbisethylenediamine with benzoic acid, and the corresponding hydrated metal chloride salts. The metal complexes were characterized by elemental analysis, melting point determination, molar conductance and magnetic moment measurements, IR, UV-Vis, 1H- and 13C-NMR, and ESR spectroscopy. The ligand and all the metal complexes were stable in the solid state at room temperature. From the analytical and spectroscopic investigations, the stoichiometry of the complexes was found to be 1:1 (metal:ligand). Based on the electronic spectra and magnetic moment data, the metal complexes had a square planar geometry. The molar conductance values show the 1:2 electrolytic nature of the metal complexes. A cyclic voltammetric study of the Cu(II) metal complex has also performed, which showed one electron quasi-reversible reduction around -0.92 to -1.10 V. In vitro biological activities of the ligand and metal complexes was checked against two bacteria Bacillus subtilis and Escherichia coli and two fungi Aspirgillus niger and A. flavus which showed the antibacterial and antifungal properties of the ligand and its metal complexes.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3492
Author(s):  
Katarzyna Gałczyńska ◽  
Zuzanna Drulis-Kawa ◽  
Michał Arabski

Metal complexes are currently potential therapeutic compounds. The acquisition of resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant search for chemical compounds with specific biological activities. One alternative option is the transition metal complexes having potential as antitumor agents. Here, we present the current knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II), ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis, autophagy, DNA damage, and cell cycle inhibition are described in this review.


Sign in / Sign up

Export Citation Format

Share Document