CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor—Effect of temperature and water vapor concentration

2009 ◽  
Vol 155 (3) ◽  
pp. 867-873 ◽  
Author(s):  
V. Nikulshina ◽  
A. Steinfeld
Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 877 ◽  
Author(s):  
Baihe Guo ◽  
Yanlin Wang ◽  
Xin Shen ◽  
Xiaolei Qiao ◽  
Li Jia ◽  
...  

In this paper, a silica aerogel support was prepared by two-step sol–gel method, and the active component K2CO3 was supported on the support by wet loading to obtain a modified potassium-based CO2 adsorbent. As the influences of reaction conditions on the CO2 capture characteristics of modified potassium-based adsorbents, the reaction temperature (50 °C, 60 °C, 70 °C, 80 °C), water vapor concentration (10%, 15%, 20%), CO2 concentration (5%, 10%, 12.5%, 15%), and total gas flow rate (400 mL/min, 500 mL/min, 600 mL/min) were studied in a self-designed fixed-bed reactor. At the same time, the low-temperature nitrogen adsorption experiment, scanning electron microscope, and X-ray diffractometer were used to study the microscopic characteristics of modified potassium-based adsorbents before and after the reaction. The results show that the silica aerogel prepared by the two-step sol–gel method has an excellent microstructure, and its specific surface area and specific pore volume are as high as 838.9 m2/g and 0.85 cm3/g, respectively. The microstructure of K2CO3 loaded on the support is improved, which promotes the CO2 adsorption performance of potassium-based adsorbents. The adsorption of CO2 by potassium-based adsorbents can be better described by the Avrami fractional kinetic model and the modified Avrami fractional kinetic model, and it is a complex multi-path adsorption process, which is related to the adsorption site and activity. The optimal adsorption temperature, water vapor concentration, CO2 concentration, and total gas volume were 60 °C, 15%, 12.5%, and 500 mL/min, respectively.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 593
Author(s):  
Nasim Alikhani ◽  
Douglas W. Bousfield ◽  
Jinwu Wang ◽  
Ling Li ◽  
Mehdi Tajvidi

In this study, a simplified two-dimensional axisymmetric finite element analysis (FEA) model was developed, using COMSOL Multiphysics® software, to simulate the water vapor separation in a moisture-selective hollow-fiber membrane for the application of air dehumidification in wood drying processes. The membrane material was dense polydimethylsiloxane (PDMS). A single hollow fiber membrane was modelled. The mass and momentum transfer equations were simultaneously solved to compute the water vapor concentration profile in the single hollow fiber membrane. A water vapor removal experiment was conducted by using a lab-scale PDMS hollow fiber membrane module operated at constant temperature of 35 °C. Three operation parameters of air flow rate, vacuum pressure, and initial relative humidity (RH) were set at different levels. The final RH of dehydrated air was collected and converted to water vapor concentration to validate simulated results. The simulated results were fairly consistent with the experimental data. Both experimental and simulated results revealed that the water vapor removal efficiency of the membrane system was affected by air velocity and vacuum pressure. A high water vapor removal performance was achieved at a slow air velocity and high vacuum pressure. Subsequently, the correlation of Sherwood (Sh)–Reynolds (Re)–Schmidt (Sc) numbers of the PDMS membrane was established using the validated model, which is applicable at a constant temperature of 35 °C and vacuum pressure of 77.9 kPa. This study delivers an insight into the mass transport in the moisture-selective dense PDMS hollow fiber membrane-based air dehumidification process, with the aims of providing a useful reference to the scale-up design, process optimization and module development using hollow fiber membrane materials.


Author(s):  
S. H. Kim ◽  
K. B. Shim ◽  
C. S. Kim ◽  
J. T. Chou ◽  
T. Oshima ◽  
...  

The influence of water vapor in air on power generation characteristic of solid oxide fuel cells was analyzed by measuring cell voltage at a constant current density, as a function of water vapor concentration at 800°C and 1000°C. Cell voltage change was negligible at 1000°C, while considerable voltage drop was observed at 800°C accelerated at high water vapor concentrations of 20 wt % and 40 wt %. It is considered that La2O3 formed on the (La0.8Sr0.2)0.98MnO3 surface, which is assumed to be the reason for a large voltage drop.


2018 ◽  
Vol 36 (13) ◽  
pp. 2667-2674 ◽  
Author(s):  
Arun Kumar Mallik ◽  
Gerald Farrell ◽  
Dejun Liu ◽  
Vishnu Kavungal ◽  
Qiang Wu ◽  
...  

2009 ◽  
Vol 32 (2) ◽  
pp. 2527-2534 ◽  
Author(s):  
David Blunck ◽  
Sumit Basu ◽  
Yuan Zheng ◽  
Viswanath Katta ◽  
Jay Gore

Fuel ◽  
2021 ◽  
pp. 122395
Author(s):  
Wan Zhang ◽  
Yingjie Li ◽  
Shoubing Chai ◽  
Zirui He ◽  
Chunxiao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document