Study of esterification and transesterification in biodiesel production from used frying oils in a closed system

2010 ◽  
Vol 160 (2) ◽  
pp. 473-479 ◽  
Author(s):  
M. Berrios ◽  
M.A. Martín ◽  
A.F.Chica ◽  
A. Martín
2007 ◽  
Vol 21 (5) ◽  
pp. 3023-3027 ◽  
Author(s):  
K. G. Georgogianni ◽  
M. G. Kontominas ◽  
E. Tegou ◽  
D. Avlonitis ◽  
V. Gergis

2015 ◽  
Vol 9 (7) ◽  
pp. 99 ◽  
Author(s):  
Nyoman Puspa Asri ◽  
Diah Agustina Puspita Sari

Synthesis of biodiesel is a strategic step in overcoming energy scarcity and the environmental degradationcaused by the continuous use of the petroleum based energy. Biodiesel as an alternative fuel for diesel engine isproduced from renewable resources such as vegetable oils and animal fats. The main obstacle in the biodieselproduction is the high price of the raw materials, resulting in the price of biodiesel is not competitive comparedto the petroleum diesel. Therefore, the use of waste frying oils (WFO) is one way to reduce the cost of biodieselproduction, because of its availability and low price. In the present work, WFO from California Fried chicken(CFC) restaurants in Surabaya were used as feed stock for the biodiesel production. The experiments wereconducted using three steps of processes: pre-treatment of WFO, preparation of alumina based compositecatalyst CaO/KI/γ-Al2O3 and transesterification of treated WFO. WFO was treated by several types and variousamounts of activated adsobents. The treated WFO was transesterified in three neck glass batch reactor withrefluxed methanol using CaO/KI/γ-Al2O3. The results reveal that the best method for treating WFO is using 7.5%(wt. % to WFO) of coconut coir. Alumina based composite catalyst CaO/KI/γ-Al2O3 was very promising fortransesterification of WFO into biodiesel. The yield of biodiesel was 83% and obtained at 65ºC, 5 h of reactiontime, 1:18 of molar ratio WFO to methanol and 6% amount of catalyst.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4111
Author(s):  
Youssef Kassem ◽  
Hüseyin Çamur ◽  
Ebaa Alassi

The physicochemical properties of biodiesel fuels and their blends prepared from four residential waste vegetable frying oils (sunflower (FSME), canola (FCME), mixture of sunflower and rapeseed (FSRME) and corn (FSCME)) were evaluated and measured to determine the best blend. The results indicate that the stability of 10 biodiesel blends was above 10 h for 0-month, meeting the stability requirement regulated in EN 14214:2014 by adding FSCME, which depends on the concentration amount of FSCME. Besides, the results showed that all fuel samples did not meet the requirements of diesel fuel standards. Therefore, automobile gasoline is used as an additive to unmixed biodiesel in various concentrations to reduce the kinematic viscosity, density and cold flow properties. The results indicate that BG85 and BG80 have met the mixed pure biodiesel with gasoline fulfilled diesel fuel quality standard. Therefore, the samples with stability above 10 h were mixed with gasoline in 15% and 20% to reduce the cold flow properties and meet the specifications of the diesel fuel standards. Moreover, the effect of long-term storage on the properties of all samples was investigated under different storage conditions. The results indicate that higher storage temperatures and longer storage periods negatively influenced the properties of the fuel samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yasmine Souissi ◽  
Meha Alouini ◽  
Wissem Mnif

The present study investigates the different approaches of biodiesel production by exploiting low cost feedstocks such as organic wastes of frying oils (WFO) and wastes of beef fats (WBF). The aim was to compare not only two different sources of waste raw materials but also different approaches of biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was produced by both chemical and enzymatic transesterification. The characterization of the biodiesel produced by both approaches was performed according to the European standard EN 14214. The results showed that the biological method gave a richer FAME biodiesel through the catalysis of whole-cell lipase. However, for the chemical method, better biodiesel physicochemical properties were observed for the two raw materials. Therefore, it would be interesting to compromise by optimizing the biological biodiesel production approach in order to obtain a better quality in coherence with EN 14214 requirements.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marco Vastano ◽  
Iolanda Corrado ◽  
Giovanni Sannia ◽  
Daniel K. Y. Solaiman ◽  
Cinzia Pezzella

Abstract A sustainable bioprocess was developed for the valorization of a no/low value substrate, i.e. waste frying oils (WFOs) with high content of free fatty acids (FFAs), otherwise unsuitable for biodiesel production. The bioprocess was verified using both recombinant (Escherichia coli) and native (Pseudomonas resinovorans) polyhydroxyalkanoates (PHAs) producing cell factories. Microbial fermentation of WFOs provided a 2-fold advantage: i) the reduction of FFAs content resulting into an upgrading of the “exhausted waste oils” and ii) the production of a bio-based microbial polymer. Proper strain designing and process optimization allowed to achieve up to 1.5 g L−1 of medium chain length, mcl-PHAs, together with an efficient conversion (80% yield) of the treated WFO into biodiesel.


2016 ◽  
Vol 69 ◽  
pp. 02002 ◽  
Author(s):  
W. Shaaban ◽  
A. H. El-Shazly ◽  
M. F. Elkady ◽  
M. Ohshima

2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Soulayman Soulayman ◽  
Ola Dayoub

This study is devoted to produce biodiesel from recycled wastes frying oils (WFO) using commercial grade chemicals in an attempt to help reducing the cost of biodiesel and pollution coming from WFO. The base – catalyzed transesterification method was applied. The variables affecting the yield and characteristics of the biodiesel produced from WFO were studied. Sodium hydroxide is used as catalyst. Different reaction times, different methanol/WFO volume ratios and different catalyst/WFO weight ratios were used with purpose of achieving the best conditions for biodiesel production A series of experiments were carried out, using methanol/WFO volume ratios from 10% to 30% and catalyst/WFO weight ratio from 0.2% to 0.8%. It was found that in treating WFO which contains 0.12% of water by weight and having an acid value of 0.52 mg of KOH/g of oil, and an iodine value 130.42 gI/100 g of oil, no need in acidic pretreatment.  Moreover, it was found that, for WFO with an acidic value of 0.52 mg KOH/gWFOs, results show that a methanol/WFO volume ratio of 13% and a catalyst/WFO weight ratio of 0.4% give the highest yield of methyl esters.  A pilot production unit of 400l/day of production capacity was designed and constructed on the basis of laboratory experiments and the process was verified on the pilot scale.©2019. CBIORE-IJRED. All rights reservedArticle History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted December 8th 2018; Available onlineHow to Cite This Article: Soulayman, S. and Ola, D. (2019) Synthesis Parameters of Biodiesel From Frying Oils Wastes. Int. Journal of Renewable Energy Development, 8(1), 33-39.https://doi.org/10.14710/ijred.8.1.33-39


Sign in / Sign up

Export Citation Format

Share Document