Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization

2019 ◽  
Vol 378 ◽  
pp. 122245 ◽  
Author(s):  
Liya Chen ◽  
Jifang Fu ◽  
Qi Lu ◽  
Liyi Shi ◽  
Mengmeng Li ◽  
...  
2018 ◽  
Vol 6 (24) ◽  
pp. 11215-11225 ◽  
Author(s):  
Jesus L. Pablos ◽  
Nuria García ◽  
Leoncio Garrido ◽  
Fernando Catalina ◽  
Teresa Corrales ◽  
...  

Ion Gel Electrolytes (IGPs) have been prepared with polycationic imidazolium or pyrrolidinium scaffolds and LiTFSI solutions in imidazolium and pyrrolidinium ionic liquids. IGPs with imidazolium groups show very large Li ion diffusivities suggesting an important contribution of anion exchange Li transport.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 474
Author(s):  
Ioannis S. Tsagkalias ◽  
Alexandra Loukidi ◽  
Stella Chatzimichailidou ◽  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
...  

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.


2020 ◽  
Vol 7 (16) ◽  
pp. 2969-2978
Author(s):  
Jie-hao Li ◽  
Jie Ren ◽  
Ying Liu ◽  
Hui-ying Mu ◽  
Rui-hong Liu ◽  
...  

Cl-Doped Bi2O2CO3 is prepared using ionic liquids as dopants and the oxygen-vacancy-induced photocatalytic mechanism is revealed.


2020 ◽  
Vol 92 (10) ◽  
pp. 1717-1731
Author(s):  
Yucui Hou ◽  
Zhi Feng ◽  
Jaime Ruben Sossa Cuellar ◽  
Weize Wu

AbstractPhenolic compounds are important basic materials for the organic chemical industry, such as pesticides, medicines and preservatives. Phenolic compounds can be obtained from biomass, coal and petroleum via pyrolysis and liquefaction, but they are mixtures in oil. The traditional methods to separate phenols from oil using alkaline washing are not environmentally benign. To solve the problems, deep eutectic solvents (DESs) and ionic liquids (ILs) have been developed to separate phenols from oil, which shows high efficiency and environmental friendliness. In this article, we summarized the properties of DESs and ILs and the applications of DESs and ILs in the separation of phenols and oil. There are two ways in which DESs and ILs are used in these applications: (1) DESs formed in situ using different hydrogen bonding acceptors including quaternary ammonium salts, zwitterions, imidazoles and amides; (2) DESs and ILs used as extractants. The effect of water on the separation, mass transfer dynamics in the separation process, removal of neutral oil entrained in DESs, phase diagrams of phenol + oil + extractant during extraction, are also discussed. In the last, we analyze general trends for the separation and evaluate the problematic or challenging aspects in the separation of phenols from oil mixtures.


2021 ◽  
Author(s):  
Dominic James Wales ◽  
Sara Miralles-Comins ◽  
Isabel Franco Castillo ◽  
Jamie Cameron ◽  
Qun Cao ◽  
...  

3D printable materials based on polymeric ionic liquids (PILs) capable of controlling the synthesis and stabilization of silver nanoparticles (AgNPs) and their synergistic antimicrobial activity are reported. The interaction of...


Sign in / Sign up

Export Citation Format

Share Document