Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing

2020 ◽  
Vol 392 ◽  
pp. 123775 ◽  
Author(s):  
Shaohan Zhang ◽  
Jingyi Hou ◽  
Qijuan Yuan ◽  
Peikun Xin ◽  
Huitong Cheng ◽  
...  
2020 ◽  
Vol 16 (1) ◽  
pp. 21-29 ◽  
Author(s):  
M.O. Ilomuanya ◽  
Z.A. Seriki ◽  
U.N. Ubani-Ukoma ◽  
B.A. Oseni ◽  
B.O. Silva

Background: Development and modifications of hybrid hydrogels have been done to improve biological properties or to decrease the disadvantages of biomaterials.Objectives: The efficacy of hyaluronic acid in combination with silver sulphadiazine in wound healing was investigated. The retaining properties of xanthan gum to aid re- epithelialization was also explored.Materials and Method: Four hybrid hydrogels comprising of different concentrations of xanthan gum, eugenol and antimicrobial agents – hyaluronic acid and silver sulphadiazine were formulated. The physicochemical properties of the gels were assessed, and the antimicrobial effectiveness of the different hydrogel were determined using the extent of wound closure as an index.Results: The hydrogel samples had approximately 90% moisture content with rate of evaporation between 26- 32% for a 5 h period at 37oC. The pH of all formulations was between 7.59 - 8.05 considering that the formulation would be applied to underlying tissues of the skin. The swelling index after a 12 h period in distilled water was 10% for HX 1, 27% for HX 2, 29% for HX 3 and 30% for HX 4. There was no new peak observed in the FTIR analysis to indicate formation of new bonds.Conclusion: Incorporation of silver sulphadiazine at 0.1% and hyaluronic acid at 1.5% in the formulation yielded the best results with regards to least presence of inflammatory cell infiltrates and excellent wound closure at 14 days compared to the control and other formulations. Further investigation may be required for clinical use as an effective wound dressing material. Keywords: Silver sulphadiazine, Xanthan gum, Hyaluronic acid, Hydrogels, Wound healing.


2010 ◽  
Author(s):  
Neil A Smart ◽  
Howard Talbot ◽  
Jim Frangos ◽  
Tawfique Chowdhury ◽  
Hazim Faragallah

Author(s):  
Margaret O. Ilomuanya ◽  
Prosper S. Okafor ◽  
Joyce N. Amajuoyi ◽  
John C. Onyejekwe ◽  
Omotunde O. Okubanjo ◽  
...  

Author(s):  
Wilza Kímilly Vital de Paiva ◽  
Waleska Rayane Dantas Bezerra de Medeiros ◽  
Cristiane Fernandes de Assis ◽  
Everaldo Silvino dos Santos ◽  
Francisco Caninde de Sousa Júnior

2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jianhua Zhang ◽  
Junfei Hu ◽  
Baoshu Chen ◽  
Tianbao Zhao ◽  
Zhipeng Gu

Abstract Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually. Excessive reactive oxygen species (ROS) produced through internal or external environmental influences can lead to lipid peroxidation, protein denaturation, and even DNA damage, and ultimately have harmful effects on cells. Aiming to sufficiently contact with the wound microenvironment and scavenge ROS, superabsorbent poly (acrylic acid) and antioxidant poly (ester amide) (PAA/PEA) hybrid hydrogel has been developed to enhance wound healing. The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared (FTIR) absorption spectrum, compression, swelling, degradation, etc. Besides, the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment, and corresponding antioxidant indicators have been tested at the cellular level. Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts, as well as accelerated angiogenesis and skin regeneration in wounds. The healing properties of wounds in vivo were further assessed on mouse skin wounds. Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization. In summary, these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.


2018 ◽  
Vol 192 ◽  
pp. 240-250 ◽  
Author(s):  
Wenhua Xu ◽  
Zheying Wang ◽  
Ying Liu ◽  
Liping Wang ◽  
Zhiwen Jiang ◽  
...  

AGE ◽  
2014 ◽  
Vol 36 (2) ◽  
pp. 733-748 ◽  
Author(s):  
Andrea N. Moor ◽  
Evan Tummel ◽  
Jamie L. Prather ◽  
Michelle Jung ◽  
Jonathan J. Lopez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document