Fate and removal of aromatic organic matter upon a combined leachate treatment process

2020 ◽  
Vol 401 ◽  
pp. 126157 ◽  
Author(s):  
Min-Da Yu ◽  
Bei-Dou Xi ◽  
Zong-Qiang Zhu ◽  
Li Zhang ◽  
Chao Yang ◽  
...  
2006 ◽  
Vol 1 (3) ◽  
Author(s):  
A. Vilar ◽  
S. Gil ◽  
M. A. Aparicio ◽  
C. Kennes ◽  
M. C. Veiga

The optimization of leachate treatment was investigated as well as the configuration of a biological-ozonation process. The leachate used for the experiments was diluted to 1/5 with tap water and treated anaerobically. The anaerobic effluent and the raw leachate were treated with ozone in order to increase their biodegradability getting the minimum organic matter removal. Both were submitted to the ozonation process, applying a constant ozone dose and varying the contact time. The ozonation of raw leachate produced a decrease of COD and BOD5 concentrations as well as BOD5/COD ratios, applying an ozone dose of 38.72 mg/L·min and contact times between 15 and 60 minutes. Ozonation as a pre-treatment process to the biological system did not improve the biodegradability of the raw leachate. The anaerobic effluent from the reactor fed with leachate diluted to 1/5, was subjected to an ozone dose of 34.99 mg/L·min and applying different contact times. BODf values increased from 74.75 up to 1220 mg/L and BODf/COD ratios reached values higher than 1. Then, the application of ozone to the anaerobic effluent led to the improvement of the biodegradability of the leachate as well as the BODf/COD ratio for all the contact times used.


RSC Advances ◽  
2019 ◽  
Vol 9 (66) ◽  
pp. 38807-38813
Author(s):  
Chengran Fang ◽  
Hongzhi Mao ◽  
Yuyang Long

The removal of di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) with dissolved organic matter (DOM) was studied in a laboratory scale anaerobic/anoxic/oxic reactor for landfill leachate treatment.


2013 ◽  
Vol 726-731 ◽  
pp. 122-126
Author(s):  
Chu Zhou Deng ◽  
Song Liu ◽  
Chen Zhong Jia

Fluorescence spectroscopy was performed to investigate the composition changes and characteristics of the leachate DOM (dissolved organic matter) during UV-TiO2photocatalytic treatment process. The results showed that fulvic-like, tryptophan-like and humic acids-like matters were the main compounds in leachate. During photocatalytic treatment process, fluorescence spectroscopy of DOM changed considerably. The final products were mainly fulvic-like and tryptophan-like matters. In general, the fluorescence signals of humic acids-like matters had the most significant change, which disappeared entirely after 60 h treatment, implying that humic acids-like matters can be degraded preferentially by photocatalysis. The other notable change was in VIS fulvic-like matters region, which suggested that fulvic-like matters can be significantly degraded. In 72 h photocatalytic effluent, VIS fulvic-like, tryptophan-like and tyrosine-like matters were remained, and the last two matters were the dominant fractions. These results indicated that fulvic-like and humic acids-like matters with macromolecular can be degraded into protein-like matters with micro-molecular by photocatalysis.


2021 ◽  
pp. 0734242X2110667
Author(s):  
Valentina Grossule ◽  
Ding Fang ◽  
Dongbei Yue ◽  
Maria Cristina Lavagnolo ◽  
Roberto Raga

When approaching the study of new processes for leachate treatment, each influencing variable should be kept under control to better comprehend the treatment process. However, leachate quality is difficult to control as it varies dramatically from one landfill to another, and in line with landfill ageing. To overcome this problem, the present study investigated the option of preparing a reliable artificial leachate in terms of quality consistency and representativeness in simulating the composition of real municipal solid waste (MSW) leachate, in view of further investigate the recent treatment process using black soldier fly (BSF) larvae. Two recipes were used to simulate a real leachate (RL): one including chemical ingredients alone (artificial synthetic leachate-SL), and the other including chemicals mixed with artificial food waste (FW) eluate (artificial mixed leachate-ML). Research data were analysed, elaborated and discussed to assess simulation performance according to a series of parameters, such as Analytical representativeness, Treatment representativeness (in this case specific for the BSF larvae process), Recipe relevance, Repeatability and Flexibility in selectively modifying individual quality parameters. The best leachate simulation performance was achieved by the synthetic leachate, with concentration values generally ranging between 97% and 118% of the RL values. When feeding larvae with both RL and SL, similar mortality values and growth performance were observed.


1992 ◽  
Vol 25 (7) ◽  
pp. 383-394 ◽  
Author(s):  
G. Garuti ◽  
M. Dohanyos ◽  
A. Tilche

Results of a three year experience on a combined anaerobic-anoxic-oxic municipal waste water treatment process - named ANANOX® - are presented. This process demonstrated to be highly efficient, with 89.6% CODt, 89.2% TSS and 81.2% N removal, and a sludge production of only 0.2 kg TSS.kg COD removed−1, a value which is roughly 50% less if compared with traditional nitrification/denitrification processes. Sulphates play a very significant role in the process because, after being reduced in the anaerobic step, where they give a contribution to the organic matter degradation, they are reoxidized in the anoxic step by nitrates, reducing the organic matter need for denitrification. Due to the high dependence of efficiency on temperature, the system proposed has advantageous uses for sewage treatment, particularly in warm climates and in tourist and recreational areas where the population increases during the warm season.


2018 ◽  
Vol 47 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Mehdi Zolfaghari ◽  
Oumar Dia ◽  
Nouha Klai ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Benxin Yu ◽  
Dongping Liu ◽  
Jian Wang ◽  
Yingxue Sun

Abstract Background Most particulate organic matter (POM) cannot be directly degraded in the conventional wastewater treatment, which should be transformed into dissolved organic matter (DOM) through a hydrolysis process. However, non-hydrolyzed POM in the biological treatment can limit treated efficiencies for the wastewater treatment plants (WWTPs) facilities. Hence an operational tool is indispensable for insight into removals of DOM and POM factions in the WWTP. In this study, excitation-emission matrix fluorescence spectroscopy (EEM) combined parallel factor analysis (PARAFAC), two-dimensional correlation (2D-COS) and structural equation modeling (SEM) was employed to evaluate removals of DOM and POM in a wastewater treatment plant. Results Four fluorescence components were identified in DOM and POM substances from the WWTP by EEM combined with PARAFAC, i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial byproduct-like (MBLF), and fulvic acid-like (FALF). In A2/O process, the TYLF and TRLF of DOM were removed to a larger extent than those of MBLF and FALF in anaerobic tank, while TYLF and MBLF of POM were removed to a great extent than those of TRLF and FALF in primary sedimentation and aerobic tanks. By the 2D-COS, a decreasing variation order of DOM fractions in the wastewater treatment process was UV-FALF → MBLF2 → Vis-FALF → TRLF → TYLF, while the decreasing order of POM fractions was Vis-FALF → UV-FALF → MBLF2 → TYLF → MBLF1 → TRLF. SEM revealed that TRLF and TYLF of DOM were degraded by anaerobic microorganism, and TRLF could be transformed partially into FALF. However, TRFL and TYLF of POM were discomposed by aerobic microorganism. Conclusions The 2D-COS and SEM can be practicable tools as EEM-PARAFAC for monitoring DOM and POM in the WWTP. The study could present a theoretical support to improving the retrofit of WWTP and formulating emission standards for organic pollutants.


2019 ◽  
Vol 80 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ahmed Samir Naje ◽  
Mohammed A. Ajeel ◽  
Isam Mohamad Ali ◽  
Hussein A. M. Al-Zubaidi ◽  
Peter Adeniyi Alaba

Abstract In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.


2020 ◽  
Vol 28 (1) ◽  
pp. 249-253 ◽  
Author(s):  
Qun Wang ◽  
Lanhui Jiang ◽  
Chengran Fang ◽  
Hongzhi Mao ◽  
Haifeng Zhuang

Sign in / Sign up

Export Citation Format

Share Document