Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects

2021 ◽  
Vol 406 ◽  
pp. 126752 ◽  
Author(s):  
Jun Duan ◽  
Haodong Ji ◽  
Tianyuan Xu ◽  
Fei Pan ◽  
Xiaona Liu ◽  
...  
2011 ◽  
Vol 399-401 ◽  
pp. 1386-1391
Author(s):  
Yuan Yuan Wang ◽  
Qian Huang ◽  
Qi Ming Xian ◽  
Cheng Sun

Nanoscale zero-valent iron (NZVI) particles were supported onto activated carbon fiber (ACF) by impregnating ACF with ferrous sulfate followed by chemical reduction with NaBH4. A new kind of material ACF/NZVI with approximate 9.64% (wt%) iron was prepared, the structure of the prepared ACF/NZVI was characterized bySEM, XRD and BET. The average NZVI particles with the size of 8.1nm were well dispersed on the ACF. The activity of the prepared ACF/NZVI was evaluated for removing chloroform in water. When 5g/L of ACF/NZVI was added into water with 10 mg/L chloroform, more than 90% of chloroform in water was removed in 48h at pH7.0 and (25±2) ºС. The dechlorination and adsorption of chloroform on ACF/NZVI took place at the same time. The total Chloroform removal by ACF/NZVI was 53.1% after 48h. Consequently, ACF/NZVI exhibits the potential of simultaneous adsorption and dechlorination for chlorinated organic contaminants in water.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-279-Pr3-286
Author(s):  
X. Dabou ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

2013 ◽  
Vol 68 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
Dongkai Zhou

Biofilms on fiber-based carriers have attracted much concern in wastewater treatment processes recently. In this study: (1) a novel sandwich structure fiber-based biofilm carrier was produced, which consisted of an inner core composed of polyacrylonitrile-based activated carbon fiber felt (PAN-ACFF) and an outer coat made of polyester reticular cloth with polypropylene fiber loops; (2) the novel carrier was filled in a step-feeding pilot-scale modified University of Cape Town process (MUCT) for sewage treatment; the MUCT contained a series of pre-anoxic/anaerobic/anoxic-1/anoxic-2/oxic tanks, wherein nitrification liquor was recycled to the anoxic-2 tank and an extra liquor return from the anoxic-1 to the pre-anoxic tank was set up; and (3) the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were continuously tested for two periods as operational parameters alternated. The optimum values were collected in Period II, when the influent loads were 2,100.6 ± 120.3 gCOD/(d m3), 205.5 ± 20.4 gTN/(d m3), 39.9 ± 3.9 gTP/(d m3), the removal percentages were 93.1 ± 1.1% of COD, 39.4 ± 3.5% of TN, and 84.6 ± 3.4% of TP. For COD, NH4+-N, and TP, the specific removal loads of filler were 291.5 ± 18.2, 22.9 ± 3.1, 4.8 ± 0.5 (g d)/kg.


Sign in / Sign up

Export Citation Format

Share Document