A pH-responsive MOF for site-specific delivery of fungicide to control citrus disease of Botrytis Cinerea

2021 ◽  
pp. 133351
Author(s):  
Xuqian Zhang ◽  
Xinyi Tang ◽  
Chenchen Zhao ◽  
Zitong Yuan ◽  
Di Zhang ◽  
...  
2020 ◽  
Vol 152 ◽  
pp. 1027-1037 ◽  
Author(s):  
Priyanka Kaushik ◽  
Eepsita Priyadarshini ◽  
Kamla Rawat ◽  
Paulraj Rajamani ◽  
H.B. Bohidar

Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1078-1086 ◽  
Author(s):  
Anja Grabke ◽  
Gerd Stammler

Gray mold, caused by the fungus Botrytis cinerea, is one of the most important diseases of strawberry in Germany. The application of site-specific fungicides remains the main strategy to reduce disease incidence and severity in the field. Isolates (n = 199) were collected from fungicide-treated strawberry fruit at a German research site with a long history of fungicide efficacy trials against gray mold. Sensitivities to the six site-specific botryticides registered in Germany were determined using microtiter assays. Values for the concentration of a fungicide at which fungal development is inhibited by 50% (EC50) ranged from 0.03 to ≥30 ppm for the succinate dehydrogenase inhibitor boscalid, 0.015 to ≥10 ppm for the hydroxyanilide fenhexamid, 0.009 to 0.739 ppm for the phenylpyrrole fludioxonil, 0.55 to 43.45 ppm for the dicarboximide iprodione, 0.021 to ≥3 ppm for the quinone outside inhibitor pyraclostrobin, and 0.106 to ≥30 ppm for the anilinopyrimidine pyrimethanil. Pyrosequencing revealed that amino acid substitutions in the target proteins Bos1 (I365S/N, V368F + Q369H), CytB (G143A), Erg27 (F412S), and SdhB (P225F, N230I, and H272R/Y) were associated with reduced sensitivity levels to the corresponding fungicide classes. In most cases, isolates with a decreased sensitivity to fludioxonil showed a reduced sensitivity to tolnaftate. This reduction is considered to be an indication of multidrug efflux pump activity. The amino acid change I365S, I365N, or V368F + Q369H in Bos1 and H272R in SdhB by itself showed EC50 values of 3.99 to 14.73 ppm, 3.87 to 5.37 ppm, 4.81 to 15.63 ppm, and 2.071 to ≥30 ppm, respectively. When isolates that contained one of these mutations were also multidrug resistant, the ranges of EC50 values shifted to 6.47 to 43.45 ppm for I365S, 7.28 to 29.84 ppm for I365N, 6.89 to 26.67 ppm for V368F + Q369H, and ≥30 ppm for H272R. The reported data suggest that the combination of multidrug resistance and an amino acid change in the target site may result in a lower sensitivity to the fungicides than one resistance mechanism by itself. Although 20% of the population analyzed was sensitive to all six different chemical classes, the majority showed reduced sensitivity to one (6%), two (13%), three (23%), four (17%), five (11%), and six (11%) different fungicides.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1306-1313 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Alejandro Pérez-García ◽  
Manuel Chamorro ◽  
Eduardo de la Peña ◽  
Antonio de Vicente ◽  
...  

Gray mold, caused by the necrotrophic fungus Botrytis cinerea., is one of the most economically important diseases of strawberry. Gray mold control involves the application of fungicides throughout the strawberry growing season; however, B. cinerea isolates resistant to multiple classes of site-specific fungicides have been recently reported in the Spanish gray mold population. Succinate dehydrogenase inhibitors (SDHI) constitute a relatively novel class of fungicides registered for gray mold control representing new alternatives for strawberry growers. In the present study, 37 B. cinerea isolates previously characterized for their sensitivity to boscalid and amino acid changes in the SdhB protein were used to determine the effective concentration that reduces mycelial growth by 50% (EC50) to fluopyram, fluxapyroxad, and penthiopyrad. The present study was also conducted to obtain discriminatory doses to monitor SDHI fungicide resistance in 580 B. cinerea isolates collected from 27 commercial fields in Spain during 2014, 2015, and 2016. The EC50 values ranged from 0.01 to >100 μg/ml for fluopyram, <0.01 to 4.19 μg/ml for fluxapyroxad, and, finally, <0.01 to 59.65 μg/ml for penthiopyrad. Based on these results, as well as findings from a previous publication, the discriminatory doses chosen to examine sensitivities to boscalid, fluopyram, fluxapyroxad, and penthiopyrad were 100, 15, 1, and 6 μg/ml, respectively. Over the course of the 3-year monitoring period, the overall frequencies of resistance to the four SDHI were 56.9, 6.9, 12.9, and 24.6%, respectively. The frequency of boscalid-resistant isolates decreased from 73 to 41% over the years; however, the fluopyram-resistant isolates increased from 5 to 10% after 1 year of registration. Four SDHI resistance patterns were observed in our population, which included patterns I (30%; resistance to boscalid), II (13.8%; resistance to boscalid and penthiopyrad), III (5.7%; boscalid, fluxapyroxad, and penthiopyrad), and IV (7.9%; resistance to boscalid, fluopyram, fluxapyroxad, and penthiopyrad). Patterns I and II were associated with the amino acid substitutions H272R and H272Y; pattern III was associated only with the H272Y mutation; and, finally, pattern IV was associated with the N230I allele in the SdhB subunit. For gray mold management, it is suggested that the simultaneous use of boscalid and penthiopyrad should be limited to one application per season; however, fluxapyroxad and, especially, fluopyram could be used as valid SDHI alternatives for gray mold control, although they should be applied with caution.


2019 ◽  
Vol 224 ◽  
pp. 104763 ◽  
Author(s):  
Vaidevi Sethuraman ◽  
Kumar Janakiraman ◽  
Venkateshwaran Krishnaswami ◽  
Subramanian Natesan ◽  
Ruckmani Kandasamy

2016 ◽  
Vol 12 (2) ◽  
pp. 355-364 ◽  
Author(s):  
Yachao Li ◽  
Yusi Lai ◽  
Xianghui Xu ◽  
Xiao Zhang ◽  
Yahui Wu ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 498-504 ◽  
Author(s):  
Lei Wang ◽  
Xin Li ◽  
Lin Yuan ◽  
Hongwei Wang ◽  
Hong Chen ◽  
...  

Site-specific conjugation of pDMAEMA to the protein surface led to a significant increase in protein activity and stability under acidic conditions.


Pharmaceutics ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 3 ◽  
Author(s):  
Luigi Lerra ◽  
Annafranca Farfalla ◽  
Beatriz Sanz ◽  
Giuseppe Cirillo ◽  
Orazio Vittorio ◽  
...  

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.


2019 ◽  
Vol 10 (38) ◽  
pp. 5215-5227 ◽  
Author(s):  
Adrian Moreno ◽  
Gerard Lligadas ◽  
Juan Carlos Ronda ◽  
Marina Galià ◽  
Virginia Cádiz

Dually functionalized amphiphilic copolyacetals as rational approach to the development of pH-responsive site-specific drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document