Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling

2013 ◽  
Vol 25 (10) ◽  
pp. 2069-2078 ◽  
Author(s):  
Cheng-gui Miao ◽  
Ying-ying Yang ◽  
Xu He ◽  
Xiao-feng Li ◽  
Cheng Huang ◽  
...  
2019 ◽  
Vol 20 (22) ◽  
pp. 5525 ◽  
Author(s):  
Kazuhiro Maeda ◽  
Yasuhiro Kobayashi ◽  
Masanori Koide ◽  
Shunsuke Uehara ◽  
Masanori Okamoto ◽  
...  

Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.


2021 ◽  
Vol 12 ◽  
pp. 204062232199170
Author(s):  
Rui Liu ◽  
Chunbo Jiang ◽  
Jingjing Li ◽  
Xiaoru Li ◽  
Lin Zhao ◽  
...  

Background: Evidence has demonstrated that non-coding RNAs (ncRNAs) could be delivered efficiently to recipient cells using exosomes as a carrier. Additionally, long ncRNA nuclear enriched abundant transcript 1 (NEAT1) is emerging as a vital regulatory molecule in the progression of rheumatoid arthritis (RA). The aim of this study was to identify the NEAT1/miR-144-3p/Rho-associated protein kinase 2 (ROCK2) functional network regulating the WNT signaling pathway in RA. Methods: In vivo, a collagen-induced arthritis (CIA) model was established to analyze the effects of blood exosomes on the incidence, clinical score, and bone degradation of RA. In vitro, the CD4+T cells were characterized by flow cytometry and the cell activities were analyzed in the presence of exosome treatment alone or in combination with altered expression of NEAT1, miR-144-3p or Rho-associated protein kinase 2 (ROCK2). The expression of NEAT1, miR-144-3p, ROCK2, and corresponding proteins in the WNT signaling pathway was detected by RT-qPCR and western blot techniques. The binding profile of NEAT1 to miR-144-3p was evaluated via a combination approach of luciferase activity assay, RNA immunoprecipitation, and RNA pull-down experiments. Results: Blood exosomes extracted from RA patients increased the incidence of RA and bone destruction significantly. Overexpression of NEAT1 or ROCK2 promoted immune cell (CD4+T cells) proliferation, Th17 cell differentiation, and cell migration in response to stimulus, whereas knockout of the NEAT1 gene induced the expression of miR-144-3p in CD4+T cells. ROCK2 exogenous expression inhibited the expression of miR-144-3p, inducing activation of the WNT signaling pathway. Conclusion: A novel regulatory pathway NEAT1/miR-144-3p/ROCK2/WNT in RA was investigated as a potential target for RA therapy.


Endocrinology ◽  
2007 ◽  
Vol 148 (6) ◽  
pp. 2630-2634 ◽  
Author(s):  
Donald A. Glass ◽  
Gerard Karsenty

Bone remodeling requires osteoblasts and osteoclasts working in concert to maintain a constant bone mass. The dysregulation of signaling pathways that affect osteoblast or osteoclast differentiation or function leads to either osteopenia or high bone mass. The discovery that activating and inactivating mutations in low-density lipoprotein receptor-related protein 5, a putative Wnt coreceptor, led to high bone mass and low bone mass in human beings, respectively, generated a tremendous amount of interest in the possible role of the Wnt signaling pathway in the regulation of bone remodeling. A number of mouse models have been generated to study a collection of Wnt signaling molecules that have been identified as regulators of bone mass. These mouse models help establish the canonical Wnt signaling pathway as a major regulator of chondrogenesis, osteoblastogenesis, and osteoclastogenesis. This review will summarize these advances.


2010 ◽  
Vol 9 (4) ◽  
pp. 207-210 ◽  
Author(s):  
Francieli de Sousa Rabelo ◽  
Licia Maria Henrique da Mota ◽  
Rodrigo Aires Corrêa Lima ◽  
Francisco Aires Corrêa Lima ◽  
Gustavo Barcelos Barra ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

2006 ◽  
Vol 175 (4S) ◽  
pp. 136-136
Author(s):  
Ralph Buttyan ◽  
Xuezhen Yang ◽  
Min-Wei Chen ◽  
Debra L. Bemis ◽  
Mitchell C. Benson ◽  
...  

Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
A Tretyn ◽  
KD Schlüter ◽  
W Janssen ◽  
HA Ghofrani ◽  
F Grimminger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document