Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type

2017 ◽  
Vol 29 ◽  
pp. 127-137 ◽  
Author(s):  
Kuan Tan ◽  
Xuan Zhang ◽  
Xiaojie Cong ◽  
Bingren Huang ◽  
Hong Chen ◽  
...  
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi193-vi193
Author(s):  
Jesse Dunnack ◽  
Ericka Randazzo ◽  
Jahmique Caines ◽  
Jame He ◽  
Joseph LoTurco

Abstract We used a new mouse model to better understand the cellular and molecular determinants of tumors driven by the C11orf95-RELA fusion. Our approach makes use of in utero electroporation and a binary transposase system to introduce human C11orf95-RELA sequence, wild type and mutant, into neural progenitors, and drive expression of the fusion in different glial and neuronal progenitor cell types. Our results indicate that truncations or point mutations in C11orf95 sequence which interfere with nuclear localization result in a complete loss of tumor-inducing activity. The mutations include truncations of the first 60 amino acids, internal truncations that delete possible mono and bipartite nuclear localization signals, and point mutations of two cysteines and histidines that make up a possible zinc finger domain in C11orf95. Interestingly, all of the mutations that block tumorigenesis also block signal independent nuclear localization of the wild type fusion, without blocking induction of NFKB response genes. We further found that over-expression of the NFKB1 subunit P50 which lacks a transcriptional activation domain significantly inhibits tumor formation by the fusion. In addition, we find that driving expression of the wild type fusion in glial progenitor types using promoters for either astrocytes or oligodendrocytes results in the formation of tumors with transcriptomes displaying significant similarities to human supratentorial ependymoma (ST-EPN), but with distinct patterns depending upon the glial progenitor promoter utilized. In contrast, promoters driving expression selectively in neuron restricted progenitors do not result in the formation of ST-EPN. Together our results reveal three new features of C11orf95-RELA driven tumorigenesis: i) multiple sequences within the C11orf95 domain are required for oncogenic driver activity of the fusion, ii) the P50 subunit of NFKB1 can inhibit fusion induced tumorigenesis, and iii) neuron-restricted precursors are less competent than glia-restricted precursors to form tumors induced by C11orf95-RELA.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2034-2034
Author(s):  
Masafumi Yamaguchi ◽  
Kingo Fujimura ◽  
Hanae Toga-Yamaguchi ◽  
Valentina Svetic ◽  
Naoki Okamura ◽  
...  

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal-recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The SDS disease locus was mapped to chromosome 7q11. We have previously reported that Shwachman-Bodian- Diamond syndrome (SBDS) gene is not required for neutrophil maturation. However, SBDS knockdown cells were sensitive to apoptotic stimuli, indicating that SBDS acts to maintain survival of granulocyte precursor cells. (Exp Hematol35; 579, 2007). A wide variety of mutations in SBDS gene has been identified, and almost of all patients show truncated immature proteins, p.K62X (c.183_184TA>CT) or p.C84fsX3 (c.258+2T>C). However, it is not yet clear how these truncated proteins affect cellular processes that result in the SDS phenotype. The SBDS protein is localized to the nucleoli but does not have the canonical nuclear localization signal. In order to clarify the molecular basis of pathogenicity of mutated SBDS proteins, we explored the subcellular distribution of normal and mutant SBDS proteins in Hela and 32Dcl3 cells. Using various N-terminal and C-terminal deletion constructs, we found N-terminal region, domain I (1-87 amino acid residue) in particular, was necessary to localize to the nucleus. The disease related mutations (C31W, K33E, N34I, L71P) and the mutations which are conserved among the species in the domain I (E44K, K62E, D70N, E82K) were generated. C31W and N34I mutants failed to localize SBDS to the nuclei. The SV40 derived nuclear localization signal was fused to these mutated SBDS protein, and these proteins were clearly localized to the nuclei. In addition to the mislocalization, the protein expression level of these mutants showed a dramatic decrease compared to the wild type. We also established SBDS wild type and domain I overexpressed 32Dcl3 cell. SBDS wild type overexpressed cells could differentiate to normal neutrophils in the presence of mG-CSF, however domain I overexpressed cells did not differentiate. Almost of all cells showed apoptosis in this domain I overexpressed cells in the presence of mG-CSF, and this was very similar like SBDS RNAi knockdown cells. The localization of endogenous SBDS protein was also analyzed in this domain I overexpressed cells. The domain I was concentrated to nuclei, however endogenous SBDS protein was diffused to cytosol. Conclusions: The present findings enable us to document the nuclear localization signals in SBDS domain I, and that the shuttling protein would promote SBDS to nuclei. These results also showed that mislocalization and/or low expression level of mutated SBDS protein would cause SDS.


2013 ◽  
Vol 69 (12) ◽  
pp. 2495-2505 ◽  
Author(s):  
Gergely Róna ◽  
Mary Marfori ◽  
Máté Borsos ◽  
Ildikó Scheer ◽  
Enikő Takács ◽  
...  

Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-α–wild-type and the importin-α–hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post-translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.


1990 ◽  
Vol 10 (12) ◽  
pp. 6565-6577
Author(s):  
G Shaulsky ◽  
N Goldfinger ◽  
A Ben-Ze'ev ◽  
V Rotter

The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Taekyu Ha ◽  
Jihye Lee ◽  
Zhiyuan Lou ◽  
Bok-Soon Lee ◽  
Chul-Ho Kim ◽  
...  

Abstract Objectives Epithelial Specific ETS-1 (ESE-1), also known as E74-Like Factor 3 (ELF3), belongs to the E26 transformation-specific transcription factor superfamily and is of great interest as a potential target for managing several types of cancer. The objectives of this study are to investigate whether ESE-1/ELF3 is a tumor suppressor and to identify dietary anti-cancer compound to activate ESE-1/ELF3 expression in human colon cancer model. Methods The formation of aberrant crypt foci (ACF) was examined in wild type and ESE-1/ELF3 knockout mice exposed to combination of azoxymethane (AOM) and dextran sulfate sodium (DSS). Stable human colon cancer cell lines expressing ESE-1/ELF3 were established and used for xenograft study and in vitro mechanistic studies. Many bioactive phytochemicals were screened based on the activation of ESE-1/ELF3 expression. Results ESE-1/ELF3 knockout in mice increased AOM-induced and DSS-promoted formation of ACF. Conversely, overexpression of ESE-1/ELF3 suppressed tumorigenicity in a xenograft mouse study and repressed anchorage-independent growth and migration/invasion in human colon cancer cells. Full length ESE-1/ELF3 localized abundantly in the nucleus, and internal deletion of nuclear localization sequence 2 (NLS2) reduced nuclear ESE-1/ELF3. Three lysine residues (318KKK320) in the NLS2 determine its nuclear localization. We identified epigallocatechin-3-gallate (EGCG) that acts as a transcriptional activator of ESE-1/ELF3 in human colon cancer cells. Conclusions These findings propose a novel and promising molecular target of dietary anti-cancer compounds for prevention of colon cancer. Funding Sources American Cancer Society. Supporting Tables, Images and/or Graphs


2019 ◽  
Vol 11 (7) ◽  
pp. 586-599 ◽  
Author(s):  
Gema Sanz ◽  
Madhurendra Singh ◽  
Sylvain Peuget ◽  
Galina Selivanova

Abstract p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.


1990 ◽  
Vol 10 (12) ◽  
pp. 6565-6577 ◽  
Author(s):  
G Shaulsky ◽  
N Goldfinger ◽  
A Ben-Ze'ev ◽  
V Rotter

The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.


Sign in / Sign up

Export Citation Format

Share Document