scholarly journals Nuclear localization signals, genetic characterisation and morphological study of wild type and 14 Arabidopsis mutant lines

2017 ◽  
Vol 4 (ICBS Conference) ◽  
pp. 676-692 ◽  
Author(s):  
Asaad Mahmood ◽  
Jim Dunwell
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi193-vi193
Author(s):  
Jesse Dunnack ◽  
Ericka Randazzo ◽  
Jahmique Caines ◽  
Jame He ◽  
Joseph LoTurco

Abstract We used a new mouse model to better understand the cellular and molecular determinants of tumors driven by the C11orf95-RELA fusion. Our approach makes use of in utero electroporation and a binary transposase system to introduce human C11orf95-RELA sequence, wild type and mutant, into neural progenitors, and drive expression of the fusion in different glial and neuronal progenitor cell types. Our results indicate that truncations or point mutations in C11orf95 sequence which interfere with nuclear localization result in a complete loss of tumor-inducing activity. The mutations include truncations of the first 60 amino acids, internal truncations that delete possible mono and bipartite nuclear localization signals, and point mutations of two cysteines and histidines that make up a possible zinc finger domain in C11orf95. Interestingly, all of the mutations that block tumorigenesis also block signal independent nuclear localization of the wild type fusion, without blocking induction of NFKB response genes. We further found that over-expression of the NFKB1 subunit P50 which lacks a transcriptional activation domain significantly inhibits tumor formation by the fusion. In addition, we find that driving expression of the wild type fusion in glial progenitor types using promoters for either astrocytes or oligodendrocytes results in the formation of tumors with transcriptomes displaying significant similarities to human supratentorial ependymoma (ST-EPN), but with distinct patterns depending upon the glial progenitor promoter utilized. In contrast, promoters driving expression selectively in neuron restricted progenitors do not result in the formation of ST-EPN. Together our results reveal three new features of C11orf95-RELA driven tumorigenesis: i) multiple sequences within the C11orf95 domain are required for oncogenic driver activity of the fusion, ii) the P50 subunit of NFKB1 can inhibit fusion induced tumorigenesis, and iii) neuron-restricted precursors are less competent than glia-restricted precursors to form tumors induced by C11orf95-RELA.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2034-2034
Author(s):  
Masafumi Yamaguchi ◽  
Kingo Fujimura ◽  
Hanae Toga-Yamaguchi ◽  
Valentina Svetic ◽  
Naoki Okamura ◽  
...  

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal-recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The SDS disease locus was mapped to chromosome 7q11. We have previously reported that Shwachman-Bodian- Diamond syndrome (SBDS) gene is not required for neutrophil maturation. However, SBDS knockdown cells were sensitive to apoptotic stimuli, indicating that SBDS acts to maintain survival of granulocyte precursor cells. (Exp Hematol35; 579, 2007). A wide variety of mutations in SBDS gene has been identified, and almost of all patients show truncated immature proteins, p.K62X (c.183_184TA>CT) or p.C84fsX3 (c.258+2T>C). However, it is not yet clear how these truncated proteins affect cellular processes that result in the SDS phenotype. The SBDS protein is localized to the nucleoli but does not have the canonical nuclear localization signal. In order to clarify the molecular basis of pathogenicity of mutated SBDS proteins, we explored the subcellular distribution of normal and mutant SBDS proteins in Hela and 32Dcl3 cells. Using various N-terminal and C-terminal deletion constructs, we found N-terminal region, domain I (1-87 amino acid residue) in particular, was necessary to localize to the nucleus. The disease related mutations (C31W, K33E, N34I, L71P) and the mutations which are conserved among the species in the domain I (E44K, K62E, D70N, E82K) were generated. C31W and N34I mutants failed to localize SBDS to the nuclei. The SV40 derived nuclear localization signal was fused to these mutated SBDS protein, and these proteins were clearly localized to the nuclei. In addition to the mislocalization, the protein expression level of these mutants showed a dramatic decrease compared to the wild type. We also established SBDS wild type and domain I overexpressed 32Dcl3 cell. SBDS wild type overexpressed cells could differentiate to normal neutrophils in the presence of mG-CSF, however domain I overexpressed cells did not differentiate. Almost of all cells showed apoptosis in this domain I overexpressed cells in the presence of mG-CSF, and this was very similar like SBDS RNAi knockdown cells. The localization of endogenous SBDS protein was also analyzed in this domain I overexpressed cells. The domain I was concentrated to nuclei, however endogenous SBDS protein was diffused to cytosol. Conclusions: The present findings enable us to document the nuclear localization signals in SBDS domain I, and that the shuttling protein would promote SBDS to nuclei. These results also showed that mislocalization and/or low expression level of mutated SBDS protein would cause SDS.


2013 ◽  
Vol 69 (12) ◽  
pp. 2495-2505 ◽  
Author(s):  
Gergely Róna ◽  
Mary Marfori ◽  
Máté Borsos ◽  
Ildikó Scheer ◽  
Enikő Takács ◽  
...  

Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-α–wild-type and the importin-α–hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post-translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.


1990 ◽  
Vol 10 (12) ◽  
pp. 6565-6577
Author(s):  
G Shaulsky ◽  
N Goldfinger ◽  
A Ben-Ze'ev ◽  
V Rotter

The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.


1990 ◽  
Vol 10 (12) ◽  
pp. 6565-6577 ◽  
Author(s):  
G Shaulsky ◽  
N Goldfinger ◽  
A Ben-Ze'ev ◽  
V Rotter

The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 341-350
Author(s):  
Jean T Greenberg ◽  
F Paul Silverman ◽  
Hua Liang

Abstract Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.


2000 ◽  
Vol 28 (6) ◽  
pp. 947-950 ◽  
Author(s):  
M. Smith ◽  
H. Moon ◽  
L. Kunst

Seed-specific expression in Arabidopsis thaliana of oleate hydroxylase enzymes from castor bean and Lesquerella fendleri resulted in the accumulation of hydroxy fatty acids in the seed oil. By using various Arabidopsis mutant lines it was shown that the endoplasmic reticulum (ER) n–-3 desaturase (FAD3) and the FAE1 condensing enzyme are involved in the synthesis of polyunsaturated and very-long-chain hydroxy fatty acids, respectively. In Arabidopsis plants with an active ER Δ12-oleate desaturase the presence of hydroxy fatty acids corresponded to an increase in the levels of 18:1 and a decrease in 18:2 levels. Expression in yeast indicates that the castor hydroxylase also has a low level of desaturase activity.


2002 ◽  
Vol 76 (18) ◽  
pp. 9505-9515 ◽  
Author(s):  
Victoria A. Olson ◽  
Justin A. Wetter ◽  
Paul D. Friesen

ABSTRACT Immediate-early protein IE1 is a principal regulator of viral transcription and a contributor to origin-specific DNA replication of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Since these viral functions involve interaction of dimeric IE1 with palindromic homologous region (hr) enhancer-origin elements of the AcMNPV genome within the nucleus, it is presumed that proper nuclear transport of IE1 is essential for productive infection. To investigate the mechanisms of IE1 nuclear import, we analyzed the effect of site-directed mutations on IE1 subcellular distribution. As demonstrated by fluorescence microscopy and biochemical fractionation of plasmid-transfected cells, wild-type IE1 localized predominantly to the nucleus. Substitution or deletion of amino acid residues within a positively charged domain (residues 534 to 538) adjacent to IE1's oligomerization motif impaired nuclear import and caused loss of transactivation. Moreover, upon coexpression, these import-defective mutations prevented nuclear entry of wild-type IE1. In contrast, double-mutated IE1 defective for both nuclear import and dimerization failed to block nuclear entry or transactivation by wild-type IE1. Thus, import-defective IE1 dominantly interfered with wild-type IE1 by direct interaction and cytosolic trapping. Collectively, our data indicate that the small basic domain encompassing residues R537 and R538 constitutes a novel nuclear localization element that functions only upon IE1 dimerization. These findings support a model wherein IE1 oligomerizes within the cytosol as a prerequisite for nuclear entry and subsequent high-affinity interaction with the symmetrical binding sites comprising AcMNPV hr enhancer-origin elements.


2021 ◽  
pp. 002203452199662
Author(s):  
J.T. Chen ◽  
C.H. Lin ◽  
H.W. Huang ◽  
Y.P. Wang ◽  
P.C. Kao ◽  
...  

Hereditary gingival fibromatosis (HGF) is a rare genetic disorder featured by nonsyndromic pathological overgrowth of gingiva. The excessive gingival tissues can cause dental, masticatory, and phonetic problems, which impose severe functional and esthetic burdens on affected individuals. Due to its high recurrent rate, patients with HGF have to undergo repeated surgical procedures of gingival resection, from childhood to adulthood, which significantly compromises their quality of life. Unraveling the genetic etiology and molecular pathogenesis of HGF not only gains insight into gingival physiology and homeostasis but also opens avenues for developing potential therapeutic strategies for this disorder. Recently, mutations in REST (OMIM *600571), encoding a transcription repressor, were reported to cause HGF (GINGF5; OMIM #617626) in 3 Turkish families. However, the functions of REST in gingival homeostasis and pathogenesis of REST-associated HGF remain largely unknown. In this study, we characterized 2 HGF families and identified 2 novel REST mutations, c.2449C>T (p.Arg817*) and c.2771_2793dup (p.Glu932Lysfs*3). All 5 mutations reported to date are nonsenses or frameshifts in the last exon of REST and would presumably truncate the protein. In vitro reporter gene assays demonstrated a partial or complete loss of repressor activity for these truncated RESTs. When coexpressed with the full-length protein, the truncated RESTs impaired the repressive ability of wild-type REST, suggesting a dominant negative effect. Immunofluorescent studies showed nuclear localization of overexpressed wild-type and truncated RESTs in vitro, indicating preservation of the nuclear localization signal in shortened proteins. Immunohistochemistry demonstrated a comparable pattern of ubiquitous REST expression in both epithelium and lamina propria of normal and HGF gingival tissues despite a reduced reactivity in HGF gingiva. Results of this study confirm the pathogenicity of REST truncation mutations occurring in the last exon causing HGF and suggest the pathosis is caused by an antimorphic (dominant negative) disease mechanism.


Sign in / Sign up

Export Citation Format

Share Document