scholarly journals CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response

Cell Reports ◽  
2017 ◽  
Vol 18 (10) ◽  
pp. 2373-2386 ◽  
Author(s):  
Abdul S. Qadir ◽  
Paolo Ceppi ◽  
Sonia Brockway ◽  
Calvin Law ◽  
Liang Mu ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2450
Author(s):  
Aneta Gandalovičová ◽  
Anna-Marie Šůchová ◽  
Vladimír Čermák ◽  
Ladislav Merta ◽  
Daniel Rösel ◽  
...  

The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal–amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.


2020 ◽  
Author(s):  
Joseph M. Gozgit ◽  
Melissa M. Vasbinder ◽  
Ryan P. Abo ◽  
Kaiko Kunii ◽  
Kristy G. Kuplast-Barr ◽  
...  

2014 ◽  
Vol 88 (9) ◽  
pp. 4932-4942 ◽  
Author(s):  
J. C. Paglino ◽  
W. Andres ◽  
A. N. van den Pol

2020 ◽  
Vol 34 (3) ◽  
pp. 4329-4347 ◽  
Author(s):  
Sabira Mohammed ◽  
Nalanda S. Vineetha ◽  
Shirley James ◽  
Jayasekharan S. Aparna ◽  
Manendra Babu Lankadasari ◽  
...  

2020 ◽  
Author(s):  
Hyeongjwa Choi ◽  
Juntae Kwon ◽  
Jiafang Sun ◽  
Min Soon Cho ◽  
Yifan Sun ◽  
...  

Abstract Accumulating evidence has shown that cellular double-stranded RNAs (dsRNAs) induce antiviral innate immune responses in human normal and malignant cancer cells. However, it is not fully understood how endogenous ‘self’ dsRNA homeostasis is regulated in the cell. Here, we show that an RNA-binding protein, DEAD-box RNA helicase 3X (DDX3X), prevents the aberrant accumulation of cellular dsRNAs. Loss of DDX3X induces dsRNA sensor-mediated type I interferon signaling and innate immune response in breast cancer cells due to abnormal cytoplasmic accumulation of dsRNAs. Dual depletion of DDX3X and a dsRNA-editing protein, ADAR1 synergistically activates the cytosolic dsRNA pathway in the breast cancer cells. Moreover, inhibiting DDX3X enhances the antitumor activity by increasing tumor intrinsic-type I interferon response, antigen presentation, and tumor-infiltration of cytotoxic T cells as well as dendritic cells in breast tumors, which may lead to the development of breast cancer therapy by targeting DDX3X in combination with immune checkpoint blockade.


2007 ◽  
Vol 283 (2) ◽  
pp. 802-808 ◽  
Author(s):  
Gagik Oganesyan ◽  
Supriya K. Saha ◽  
Eric M. Pietras ◽  
Beichu Guo ◽  
Andrea K. Miyahira ◽  
...  

2020 ◽  
Vol 117 (32) ◽  
pp. 19475-19486
Author(s):  
Carina Elsner ◽  
Aparna Ponnurangam ◽  
Julia Kazmierski ◽  
Thomas Zillinger ◽  
Jenny Jansen ◽  
...  

The DNA sensor cGAS catalyzes the production of the cyclic dinucleotide cGAMP, resulting in type I interferon responses. We addressed the functionality of cGAS-mediated DNA sensing in human and murine T cells. Activated primary CD4+T cells expressed cGAS and responded to plasmid DNA by upregulation of ISGs and release of bioactive interferon. In mouse T cells, cGAS KO ablated sensing of plasmid DNA, and TREX1 KO enabled cells to sense short immunostimulatory DNA. Expression ofIFIT1andMX2was downregulated and upregulated in cGAS KO and TREX1 KO T cell lines, respectively, compared to parental cells. Despite their intact cGAS sensing pathway, human CD4+T cells failed to mount a reverse transcriptase (RT) inhibitor-sensitive immune response following HIV-1 infection. In contrast, infection of human T cells with HSV-1 that is functionally deficient for the cGAS antagonist pUL41 (HSV-1ΔUL41N) resulted in a cGAS-dependent type I interferon response. In accordance with our results in primary CD4+T cells, plasmid challenge or HSV-1ΔUL41N inoculation of T cell lines provoked an entirely cGAS-dependent type I interferon response, including IRF3 phosphorylation and expression of ISGs. In contrast, no RT-dependent interferon response was detected following transduction of T cell lines with VSV-G-pseudotyped lentiviral or gammaretroviral particles. Together, T cells are capable to raise a cGAS-dependent cell-intrinsic response to both plasmid DNA challenge or inoculation with HSV-1ΔUL41N. However, HIV-1 infection does not appear to trigger cGAS-mediated sensing of viral DNA in T cells, possibly by revealing viral DNA of insufficient quantity, length, and/or accessibility to cGAS.


Cancer Cell ◽  
2021 ◽  
Author(s):  
Joseph M. Gozgit ◽  
Melissa M. Vasbinder ◽  
Ryan P. Abo ◽  
Kaiko Kunii ◽  
Kristy G. Kuplast-Barr ◽  
...  

2019 ◽  
Vol 15 (4) ◽  
pp. e1007745 ◽  
Author(s):  
R. Paul Wilson ◽  
Sarah A. Tursi ◽  
Glenn J. Rapsinski ◽  
Nicole J. Medeiros ◽  
Long S. Le ◽  
...  

2020 ◽  
Author(s):  
Hyeongjwa Choi ◽  
Juntae Kwon ◽  
Jiafang Sun ◽  
Min Soon Cho ◽  
Yifan Sun ◽  
...  

ABSTRACTAccumulating evidence has shown that cellular double-stranded RNAs (dsRNAs) induce antiviral innate immune responses in human normal and malignant cancer cells. However, it is not fully understood how endogenous ‘self’ dsRNA homeostasis is regulated in the cell. Here, we show that an RNA-binding protein, DEAD-box RNA helicase 3X (DDX3X), prevents the aberrant accumulation of cellular dsRNAs. Loss of DDX3X induces dsRNA sensor-mediated type I interferon signaling and innate immune response in breast cancer cells due to abnormal cytoplasmic accumulation of dsRNAs. Dual depletion of DDX3X and a dsRNA-editing protein, ADAR1 synergistically activates the cytosolic dsRNA pathway in breast cancer cell. Moreover, inhibiting DDX3X enhances the antitumor activity by increasing tumor intrinsic-type I interferon response, antigen presentation, and tumor-infiltration of cytotoxic T cells as well as dendritic cells in breast tumors, which may lead to the development of breast cancer therapy by targeting DDX3X in combination with immune checkpoint blockade.


Sign in / Sign up

Export Citation Format

Share Document