scholarly journals Regulatory role of SphK1 in TLR7/9‐dependent type I interferon response and autoimmunity

2020 ◽  
Vol 34 (3) ◽  
pp. 4329-4347 ◽  
Author(s):  
Sabira Mohammed ◽  
Nalanda S. Vineetha ◽  
Shirley James ◽  
Jayasekharan S. Aparna ◽  
Manendra Babu Lankadasari ◽  
...  
2014 ◽  
Vol 11 (1) ◽  
pp. 24 ◽  
Author(s):  
Gunjan Manocha ◽  
Ritu Mishra ◽  
Nikhil Sharma ◽  
Kanhaiya Kumawat ◽  
Anirban Basu ◽  
...  

2015 ◽  
Vol 11 (8) ◽  
pp. e1005084 ◽  
Author(s):  
Karoly Toth ◽  
Sang R. Lee ◽  
Baoling Ying ◽  
Jacqueline F. Spencer ◽  
Ann E. Tollefson ◽  
...  

Inflammation ◽  
2016 ◽  
Vol 40 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Elí Terán-Cabanillas ◽  
Jesús Hernández

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32947 ◽  
Author(s):  
Alan C-Y. Hsu ◽  
Kristy Parsons ◽  
Ian Barr ◽  
Sue Lowther ◽  
Deborah Middleton ◽  
...  

Cell Reports ◽  
2017 ◽  
Vol 18 (10) ◽  
pp. 2373-2386 ◽  
Author(s):  
Abdul S. Qadir ◽  
Paolo Ceppi ◽  
Sonia Brockway ◽  
Calvin Law ◽  
Liang Mu ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1301
Author(s):  
Ioannis Kienes ◽  
Tanja Weidl ◽  
Nora Mirza ◽  
Mathias Chamaillard ◽  
Thomas A. Kufer

Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.


2007 ◽  
Vol 283 (2) ◽  
pp. 802-808 ◽  
Author(s):  
Gagik Oganesyan ◽  
Supriya K. Saha ◽  
Eric M. Pietras ◽  
Beichu Guo ◽  
Andrea K. Miyahira ◽  
...  

2021 ◽  
Author(s):  
Katarina Akhmetova ◽  
Maxim Balasov ◽  
Igor Chesnokov

ABSTRACTStimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work we describe a direct but previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). ACC and FAS also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FAS enzyme activity. Together, our results demonstrate a direct role of STING in lipid metabolism in Drosophila.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Katarina Akhmetova ◽  
Maxim Balasov ◽  
Igor Chesnokov

Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.


2020 ◽  
Vol 117 (32) ◽  
pp. 19475-19486
Author(s):  
Carina Elsner ◽  
Aparna Ponnurangam ◽  
Julia Kazmierski ◽  
Thomas Zillinger ◽  
Jenny Jansen ◽  
...  

The DNA sensor cGAS catalyzes the production of the cyclic dinucleotide cGAMP, resulting in type I interferon responses. We addressed the functionality of cGAS-mediated DNA sensing in human and murine T cells. Activated primary CD4+T cells expressed cGAS and responded to plasmid DNA by upregulation of ISGs and release of bioactive interferon. In mouse T cells, cGAS KO ablated sensing of plasmid DNA, and TREX1 KO enabled cells to sense short immunostimulatory DNA. Expression ofIFIT1andMX2was downregulated and upregulated in cGAS KO and TREX1 KO T cell lines, respectively, compared to parental cells. Despite their intact cGAS sensing pathway, human CD4+T cells failed to mount a reverse transcriptase (RT) inhibitor-sensitive immune response following HIV-1 infection. In contrast, infection of human T cells with HSV-1 that is functionally deficient for the cGAS antagonist pUL41 (HSV-1ΔUL41N) resulted in a cGAS-dependent type I interferon response. In accordance with our results in primary CD4+T cells, plasmid challenge or HSV-1ΔUL41N inoculation of T cell lines provoked an entirely cGAS-dependent type I interferon response, including IRF3 phosphorylation and expression of ISGs. In contrast, no RT-dependent interferon response was detected following transduction of T cell lines with VSV-G-pseudotyped lentiviral or gammaretroviral particles. Together, T cells are capable to raise a cGAS-dependent cell-intrinsic response to both plasmid DNA challenge or inoculation with HSV-1ΔUL41N. However, HIV-1 infection does not appear to trigger cGAS-mediated sensing of viral DNA in T cells, possibly by revealing viral DNA of insufficient quantity, length, and/or accessibility to cGAS.


Sign in / Sign up

Export Citation Format

Share Document