The influence of superabsorbent polymers on strength and durability properties of blended cement mortars

2014 ◽  
Vol 52 ◽  
pp. 73-80 ◽  
Author(s):  
H. Beushausen ◽  
M. Gillmer ◽  
M. Alexander
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 915
Author(s):  
Xiaoqiang Qi ◽  
Sulei Zhang ◽  
Tengteng Wang ◽  
Siyao Guo ◽  
Rui Ren

Graphene’s outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO2-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO2-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO2-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO2-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO2-RGO cement mortars were conducted, and it was found that with the same amount of TiO2-RGO and GO, the TiO2-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO2-RGO prepared by titanium dioxide (TiO2) intercalation can better improve the strength and durability performance of cement mortars compared to GO.


2021 ◽  
Author(s):  
Ibrahim Al-Ani ◽  
◽  
Wan Hamidon ◽  
Wan Mohtar ◽  
Basma Alwachy ◽  
...  

Concrete is a major material used in the construction of buildings and structures in the world. Gravel and sand are the major ingredients of concrete but are non-renewable natural materials. Therefore, the utilisation of palm oil clinker (POC), a solid waste generated from palm oil industry is proposed to replace natural aggregate in this research to reduce the demand for natural aggregates. One mix of ordinary concrete as control concrete; while four mix proportions of oil palm clinker concrete were obtained by replacing 25 %, 50 %, 75 %, and 100 % of gravel and sand of control concrete with coarse and fine oil palm clinker respectively by volume, with same cement content and water cement ratio. Compressive strength test was carried out of concretes with different percentages of oil palm clinker; whereas water absorption test according to respective standard, were carried out to determine the durability properties of various mixes. Based on the results obtained, the study on the effect of percentage of clinker on strength and durability properties was drawn. According to ACI classification of light weight concrete only the 100 percentage replacement can achieve the definition of light weight concrete since its density less than 1900 kg/m3 and strength larger than 17 MPa. Eventually the 25 % replacement of the normal aggregate by the OPC will improve the strength and durability of the concrete.


1996 ◽  
Vol 8 (32) ◽  
pp. 167-173 ◽  
Author(s):  
M. Maslehuddin ◽  
J. Shirokoff ◽  
M. A. B. Siddiqui

Sign in / Sign up

Export Citation Format

Share Document