Investigation on Strength and Durability Properties of Pond Ash Concrete

Author(s):  
D. Dharma Rao
2021 ◽  
Author(s):  
Ibrahim Al-Ani ◽  
◽  
Wan Hamidon ◽  
Wan Mohtar ◽  
Basma Alwachy ◽  
...  

Concrete is a major material used in the construction of buildings and structures in the world. Gravel and sand are the major ingredients of concrete but are non-renewable natural materials. Therefore, the utilisation of palm oil clinker (POC), a solid waste generated from palm oil industry is proposed to replace natural aggregate in this research to reduce the demand for natural aggregates. One mix of ordinary concrete as control concrete; while four mix proportions of oil palm clinker concrete were obtained by replacing 25 %, 50 %, 75 %, and 100 % of gravel and sand of control concrete with coarse and fine oil palm clinker respectively by volume, with same cement content and water cement ratio. Compressive strength test was carried out of concretes with different percentages of oil palm clinker; whereas water absorption test according to respective standard, were carried out to determine the durability properties of various mixes. Based on the results obtained, the study on the effect of percentage of clinker on strength and durability properties was drawn. According to ACI classification of light weight concrete only the 100 percentage replacement can achieve the definition of light weight concrete since its density less than 1900 kg/m3 and strength larger than 17 MPa. Eventually the 25 % replacement of the normal aggregate by the OPC will improve the strength and durability of the concrete.


Concrete is a globally utilized material in the construction field. In the last few decades, Concrete consumption has become multifold and usage has enhanced in massive scale due to the rapid growth of infra sector. Generally, Concrete consists of cement, aggregate, and water; these ingredients become more expensive day by day and additionally hard to please and is increasing widely. During the process of making Ordinary Portland Cement(OPC) produces a large amount of greenhouse gases and the environment being polluted. To minimize the cement utilization and environmental issues is essential to switch the cement by another alternate materials such as pozzolanas. The various number of pozzolanic materials comes from industrial wastes are Groundz Granulatedz Blastz furnacez Slagz (GGBS), xFlyqAsh (FA), zSilicazFume (SF), Metakaolin (MK) etc are utilized in concrete. Similarly, the availability of river sand is getting drained furthermore it turns out troublesome. In order to avoid this problem river sand is alter by zManufacturedkSand (M Sand). An attempt is made in the present investigation to study on properties of fiber reinforced concrete (qsteelu fibers @ 1% of binder) of M40 grade made with OPC, GGBS, MK and manufactured sand. In this study, OPC is replaced by GGBS and MK in different proportions. By casting requisite number of cubes, cylinders then zMechanical properties are determined such as fCompressivekstrength,sSplitdtensile strength tests and durability properties are determined by conducting Water absorption and Sorptivity tests. Test results are compared between controlled concrete and innovative concrete of M40 grade.It is observed that 30%(15%GGBS,15%MK) replacement is optimum for strength and durability criteria.


MRS Advances ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 1267-1275
Author(s):  
Mike Otieno ◽  
Riccardo Opeka

AbstractThe influence of low curing temperatures (5, 10 and 15 ± 2 °C) on the strength and durability properties of ground granulated blastfurnace slag (GGBS) and ground granulated Corex slag (GGCS) concretes was studied. A standard curing temperature of 23 ± 2 °C) was also used for comparative purposes. Test specimens were cast using 100% CEM I 52.5N (PC), and three PC/Slag (GGBS or GGCS) replacement ratios of 50/50, 65/35 and 80/20, and a w/b ratio of 0.40. The specimens were cured for 28 days by submersion in water at the respective curing temperatures and then tested for durability. Durability was assessed using oxygen permeability, water sorptivity and chloride conductivity tests. The results showed that durability of the concretes decreased as the curing temperature decreased – gas permeability and water sorptivity increased while chloride resistance decreased. It was also observed that at a given curing temperature, the slag blended concretes showed superior durability performance than the plain PC concretes.


2020 ◽  
Vol 184 ◽  
pp. 01092
Author(s):  
M Niveditha ◽  
Srikanth Koniki

Geopolymer concrete is prepared by reacting silicate as well as aluminate consisting materials with a caustic activator. More often, waste materials such as GGBS, fly ash, slag from metal and iron production are used. Recent investigations adding new materials like Alccofine, which improves the properties of geopolymer concrete even at ambient temperature condition. This research paper presents a details literature survey on the durability properties of geopolymer concrete. Various research literatures are previewed on durability of geopolymer concrete with the addition of different supplementary cementious materials as their necessity is increasing due to insistent constituents. Past studies from the literature reviews suggested that replacement of cement with chemical and mineral admixtures enhanced the properties of strength and durability of concrete. The micro structures, Morphological structures by SEM, lower shrinkage, higher mechanical strengths, superior durability with environmental sustainability are observed. XRD studies shown enhanced polymerisation reaction which is responsible for development of strength. Elevated temperatures and Surface deterioration are controlled in GPC than OPC. Geopolymer concrete provides better resistance for specimens to chemical attack and also water absorption, sorptivity, porosity have good influence to the durability properties in ambient curing conditions compared to conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document