scholarly journals Effect of calcium stearate and aluminum powder on free and restrained drying shrinkage, crack characteristic and mechanical properties of concrete

Author(s):  
Fazel Azarhomayun ◽  
Mohammad Haji ◽  
Mahdi Kioumarsi ◽  
Mohammad Shekarchi
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2020 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Matthew S. Sullivan ◽  
Mi G. Chorzepa ◽  
Stephan A. Durham

Ternary blends of cementitious materials are investigated. A cement replacement level of 45% is used for all ternary mixtures consisting of 15% metakaolin and 30% slag replacements. Three metakaolin and two blast furnace slag, referred to as ‘slag’ for short, products commercially available are used to compare performance in ternary blends. A mixture with a 45% fly ash replacement is included to serve as a benchmark for performance. The control mixture contains 422 kg of cement per cubic meter of concrete, and a water-to-cementitious material ratio of 0.43 is used for all mixtures with varying dosages of superplasticizer to retain workability. Mixtures are tested for mechanical properties, durability, and volumetric stability. Mechanical properties include compression, split-cylinder tension, modulus of rupture, and dynamic Young’s modulus. Durability measures are comprised of rapid chloride-ion penetrability, sulfate resistance, and alkali–silica reactivity. Finally, the measure of dimensional stability is assessed by conducting drying shrinkage and coefficient of thermal expansion tests. Results indicate that ternary mixtures including metakaolin perform similarly to the control with respect to mechanical strength. It is concluded that ternary blends perform significantly better than both control and fly ash benchmark in tests measuring durability. Furthermore, shrinkage is reduced while the coefficients of thermal expansion are slightly higher than control and the benchmark.


2011 ◽  
Vol 250-253 ◽  
pp. 374-378
Author(s):  
Ying Zi Yang ◽  
Yan Yao ◽  
Yu Zhu

Four-point bending test was employed to investigate the effects of gradation of sand on the mechanical properties of Engineered Cementitious Composites (ECC). The characteristics of ECC such as mid-span deflection, first cracking load, peak load and fracture toughness were obtained from the load-deflection curve. Effects of gradation of sand on fresh properties, compressive strength, flexural strength and drying shrinkage of ECC were also discussed in this paper. Test results shown that when the fineness modulus of sand in ECC was 1.0, the mid-span deflection and fracture toughness of ECC increased nearly 1.5 times and 2 times that of ECC with the sand fineness modulus of 2.97, respectively. With the sand getting finer, the more superplascitizer is needed and the crack width of ECC becomes smaller. The drying shrinkage of ECC with 2.97 and 1.0 fineness modulus of sand at 24 days was 8×10-4 and 15.6×10-4, respectively.


2011 ◽  
Vol 225-226 ◽  
pp. 457-460
Author(s):  
Wei Li

Aimed for current situation that most scholars concerned with mechanics, deformation, flow performance of modified cement mortar, the paper selected carboxyl styrene-butadiene latex as the modified material, researched on cement mortar’ water reducing effect, wear resistance, corrosion resistance-mechanical properties, drying shrinkage before modifing and after modifing. Compared cement fine mortar’s properties with cement mechine-made mortar’s properties before and after modification. Research results showed that the addition of carboxyl SB latex, the overall performance of cement mortar is greatly improved, and with the increase of polymer cement ratio, this improvement trend is more obvious, those changes especially are suitable for extra-fine cement mortar. The results clarify the properties variation law of cement mortar before and after modification, this provides scientific guidance for polymer latex modified cement mortar mix design.


2011 ◽  
Vol 243-249 ◽  
pp. 6880-6886 ◽  
Author(s):  
Yu Chen ◽  
Ying Li Gao

FA-FGD mortar and concrete were manufactured and tested the main performances. With WFA-FGD taking 80~85% of the total composite binder by mass, mortar used in buildings was provided with good workability, enough mechanical properties specified for masonry in China, low drying shrinkage and strong sulfate corrosion, which was suitable for plastering or coating inside and outside walls. With LFA-FGD more than 30% in proportion, middle-strength concrete showed satisfactory workability with no segregation, no bleeding and low slump loss, stable strength development and low brittleness, about 60% of the domestic standard limit of wear mass loss in the specified test, good impermeability as well as excellent cracking resistance.


Sign in / Sign up

Export Citation Format

Share Document