Fabrication and microstructure of a new ternary solid solution of Ti3Al0.8Si0.2Sn0.2C2 with high solid solution strengthening effect

2018 ◽  
Vol 44 (8) ◽  
pp. 9593-9600 ◽  
Author(s):  
Leping Cai ◽  
Zhenying Huang ◽  
Wenqiang Hu ◽  
Cong Lei ◽  
Shaoshuai Wo ◽  
...  
1985 ◽  
Vol 53 ◽  
Author(s):  
S. Guruswamy ◽  
J.P. Hirth ◽  
K.T. Faber

ABSTRACTSubstantial solid solution strengthening of GaAs by In acting as InAs4 units has recently been predicted. This strengthening could account for the reduction of dislocation density in GaAs single crystals grown from the melt. High temperature hardness measurements up to 700ºC have been carried out on (100) GaAs and Ga0.9975 In0.0025 As wafers. Results show a significant strengthening effect in In—doped GaAs even at concentration levels of about 0.2 wt%. A temperature independent flow stress region is observed for both these alloys. The In—doped GaAs shows ahigher plateau stress level compared to the undoped GaAs. The results are consistent with the solid solution strengthening model.


1994 ◽  
Vol 364 ◽  
Author(s):  
Tohru Takahashi ◽  
Tadashi Hasegawa

AbstractTwo types of aluminum–titanium–iron–vanadium ( Al–Ti–Fe–V ) quarternary intermetallic compounds have been prepared by arc melting under argon atmosphere. Their compositions were nominally Al66Ti25Fe6V3 and Al66Ti25Fe3V6. These alloys are based on the iron–modified titanium trialuminide with L12 cubic structure. Vanadium addition up to about 6 mol% did not destroy the cubic symmetry, and L12 solid solution compounds were produced in these two Al–Ti–Fe–V quarternary alloys. Microstructure and mechanical properties have been investigated. It has been demonstrated that vanadium addition to iron–modified L12 titanium trialuminides can enhance their strength.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1412
Author(s):  
Christian Gadelmeier ◽  
Sebastian Haas ◽  
Tim Lienig ◽  
Anna Manzoni ◽  
Michael Feuerbacher ◽  
...  

The main difference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which shifts from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Face-centered cubic, equiatomic, and single crystalline high entropy alloy CrMnFeCoNi was pre-alloyed by arc-melting and cast as a single crystal using the Bridgman process. Mechanical characterization by creep testing were performed at temperatures of 700, 980, 1100, and 1200 °C at different loads under vacuum and compared to single-crystalline pure nickel. The results allow a direct assessment of the influence of the chemical composition without any disturbance by grain boundary sliding or diffusion. The results indicate different behaviors of single crystalline pure nickel and CrMnFeCoNi. At 700 °C CrMnFeCoNi is more creep-resistant than Ni, but at 980 °C both alloys show a nearly similar creep strength. Above 980 °C the creep behavior is identical and the solid solution strengthening effect of the CrMnFeCoNi alloy disappears.


1986 ◽  
Vol 1 (1) ◽  
pp. 60-67 ◽  
Author(s):  
S. C. Huang ◽  
C. L. Briant ◽  
K.-M. Chang ◽  
A. I. Taub ◽  
E. L. Hall

The effect of carbon on the mechanical properties of ordered, face-center-cubic Ni3Al has been studied. It has been found that carbon provides no ductihzation to the intermetallic compound, but exerts a large solid solution strengthening effect. The strengthening rate measured is Δσy/ΔC∼0.5G per atom percent carbon, where G is the Ni3Al shear modulus. Auger analysis and lattice parameter measurements were also carried out. The results are discussed with respect to the nature of carbon in grain boundary regions and in the bulk.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1718 ◽  
Author(s):  
Tijun Chen ◽  
Libo Geng ◽  
He Qin ◽  
Min Gao

A novel core-shell-structured Ti-(Al-Si-Ti) particle (Ti-(Al-Si-Ti)p) reinforced A356 matrix composite was fabricated by a new method, powder thixoforming, which combines the merits of both powder metallurgy and semisolid thixoforming. The effects of reheating temperature on the microstructure and tensile properties of the resulting composite were investigated. The results indicated that the thickening of the Al-Si-Ti compound shells, with rising the reheating temperature, significantly enhanced the strengthening role, but the fracture and peeling of the shells, at higher than 600 °C, impaired the strengthening effect. The composite formed at 600 °C had a favorable tensile elongation of 8.3% besides high tensile strengths. During tensile testing, the Ti@(Al-Si-Ti)p frequently fractured across the Ti cores and occasionally cracked around the Ti cores, but preferentially fractured between the outer cracked shells and the inner cores for the composites thixoformed at higher than 600 °C. The delayed formation of cracks in the Ti-(Al-Si-Ti)p and the small size of the cracks contributed to ductility improvement. The MSL model, modified according to the Ti@(Al-Si-Ti)p characteristics, was essentially suitable for predicting the yield strength of such composites. The largest contribution to the strength was resulted from solid solution strengthening of Ti element, but the strengthening role from geometrically necessary dislocations was significantly improved as the reheating temperature rose from 590 °C to 600 °C.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 282 ◽  
Author(s):  
Li Xiang ◽  
Wenmin Guo ◽  
Bin Liu ◽  
Ao Fu ◽  
Jianbo Li ◽  
...  

A series of TaNbVTiAlx (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) refractory high-entropy alloys (RHEAs) with high specific strength and reasonable plasticity were prepared using powder metallurgy (P/M) technology. This paper studied their microstructure and compression properties. The results show that all the TaNbVTiAlx RHEAs exhibited a single BCC solid solution microstructure with no elemental segregation. The P/M TaNbVTiAlx RHEAs showed excellent room-temperature specific strength (207.11 MPa*cm3/g) and high-temperature specific strength (88.37 MPa*cm3/g at 900 °C and 16.03 MPa*cm3/g at 1200 °C), with reasonable plasticity, suggesting that these RHEAs have potential to be applied at temperatures >1200 °C. The reasons for the excellent mechanical properties of P/M TaNbVTiAl0.2 RHEA were the uniform microstructure and solid solution strengthening effect.


Sign in / Sign up

Export Citation Format

Share Document