The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating

Author(s):  
Hairui Ma ◽  
Qiang Miao ◽  
Gaohui Zhang ◽  
Wenping Liang ◽  
Yang Wang ◽  
...  
1994 ◽  
Vol 340 ◽  
Author(s):  
D.L. Alov ◽  
A.A. Kolchin ◽  
S.I. Rybchenko

ABSTRACTCVD is applied to grow the multilayer structure on CdSe proposed as a promising coating for IR-optics. The coating is composed of alternately grown CdS and CdSe single crystal layers. The proposed coating characteristics are expected to be much better than those of the coatings produced by the sputtering method.


Author(s):  
Viktor Gaidaichuk ◽  
Liudmyla Shevchuk ◽  
Olena Bilobrytska ◽  
Serhii Baran

The article presents the results of a computer analysis of the stress-strain state of a multilayer asphalt pavement under the influence of traffic loads. Based on the finite-element model of coating deformation, a study was made of the mechanical behavior of the system considered for various structural schemes for the existence of vertical cracks in various layers of the structure under the action of vertical transport loads. The effects of stress concentration in the system due to high-gradient deformation fields and structural imperfections of the multilayer coating were found. Multi-layer asphalt roads are one of the most common construction projects. Based on a review of the tasks of science about their strength and durability, these structures can be attributed to significantly complex types of building systems. This is primarily due to the multi-parameter nature of the factors that determine their design, material properties, types of loads and the impact on them, as well as their operating conditions. Therefore, designers of road structures and specialists who are involved in the theoretical modeling of the mechanical behavior of layered massifs during operation have to take into account many additional factors that complicate their work. These include the most important design and operational features of these systems, which significantly affect the nature of the distribution of stress and strain fields, as well as their intensity. First of all, they include special structural schemes of the road and pavement. It is a multilayer three-dimensional package having disproportionately different sizes along each direction. Hidden (as well as obvious) vertical cracks and horizontal delamination of the structure, sometimes permissible under operating conditions, can be added to the design model of a structure. Such violations of the continuity of the system also lead to discontinuity of the displacement functions, which further worsens the system’s performance and complicates the task of its modeling. The materials of the coating layers, which include asphalt concrete, cement, crushed stone, sand, soil, and others, also bring particular specificity to the work of the road structure. All of them differently resist tensile, compression and shear, and asphalt concrete is also elastic-viscous - plastic material, whose properties are largely dependent on temperature.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2015 ◽  
Vol 60 (6) ◽  
pp. 511-520 ◽  
Author(s):  
A.A. Efremov ◽  
◽  
V.G. Litovchenko ◽  
V.P. Melnik ◽  
O.S. Oberemok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document