Optimum synthesis of an electrodialysis framework with a background process—I: A novel electrodialysis model

2016 ◽  
Vol 147 ◽  
pp. 180-188 ◽  
Author(s):  
Chiedza D. Nezungai ◽  
Thokozani Majozi
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangchao Meng ◽  
Zisheng Zhang

In photocatalysis, the recombination of electron-hole pairs is generally regarded as one of its most serious drawbacks. The synthesis of various composites with heterojunction structures has increasingly shed light on preventing this recombination. In this work, a BiOBr-Bi2WO6photocatalytic heterojunction semiconductor was synthesized by the facile hydrothermal method and applied in the photocatalytic degradation process. It was determined that both reaction time and temperature significantly affected the crystal structure and morphologies of the photocatalysts. BiOBr (50 at%)-Bi2WO6composites were prepared under optimum synthesis conditions (120°C for 6 h) and by theoretically analyzing the DRS results, it was determined that they possessed the suitable band gap (2.61 eV) to be stimulated by visible-light irradiation. The photocatalytic activities of the as-prepared photocatalysts were evaluated by the degradation ofRhodamine B (RhB)under visible-light irradiation. The experimental conditions, including initial concentration, pH, and catalyst dosage, were explored and the photocatalysts in this system were proven stable enough to be reused for several runs. Moreover, the interpreted mechanism of the heterojunction enhancement effect proved that the synthesis of a heterojunction structure provided an effective method to decrease the recombination rate of the electron-hole pairs, thereby improving the photocatalytic activity.


2021 ◽  
Vol 19 (4) ◽  
pp. 265-272
Author(s):  
Sibel İla ◽  
Azmi Seyhun Kipcak ◽  
Emek Moroydor Derun

Potassium borates are one of the minor groups of boron minerals with its distinct non-linear optical properties. In this study, potassium borate compound of santite (KB5O8·4H2O) are synthesized using potassium carbonate (K2CO3) and boric acid (H3BO3) with a new and rapid method of microwave irradiation. The synthesized minerals are characterized by various analysis techniques of X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Three parameters of “microwave power level”, “reaction times” and “reaction stoichiometric constants (elemental potassium to boron ratios)” are determined for the optimum synthesis of potassium borate within the four step. At the end of the step 4, optimum products are obtained as santite type potassium borate. Synthesized potassium borates Raman bands are in mutual agreement with the boron compounds and the overall reaction yields to potassium borates are very high compared with the lower reaction times.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Mihailo Jovanovic ◽  
Ivan Babic ◽  
Milan Cabarkapa ◽  
Jelena Misic ◽  
Sasa Mijalkovic ◽  
...  

This paper presents Android-based SOS platform named SOSerbia for sending emergency messages by citizens in Serbia. The heart of the platform is SOS client Android application which is an easy and simple solution for sending SOS messages with unique combination of volume buttons. The proposed platform solves a lot of safety, security, and emergency problems for people who can be in dangerous situations. After a person presses a correct combination of buttons, a message with his or her location is sent to the operating center of the Serbian Police. The platform merges several appropriately combined advanced Android technologies into one complete solution. The proposed solution also uses the Google location API for getting user’s location and Media Player broadcast receiver for reading pressed buttons for volume. This logic can be also customized for any other mobile operating system. In other words, the proposed architecture can be also implemented in iOS or Windows OS. It should be noted that the proposed architecture is optimized for different mobile devices. It is also implemented with simple widget and background process based on location. The proposed platform is experimentally demonstrated as a part of emergency response center at the Ministry of Interior of the Republic of Serbia. This platform overcomes real-life problems that other state-of-the-art solutions introduce and can be applied and integrated easily in any national police and e-government systems.


Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.


Author(s):  
C. Bagci

Abstract Analytical precision position and optimum synthesis methods for linkages to generate specified force and torque histories are presented and applied to the planar four-bar mechanism. Mechanical advantage method (MAM) and integration of power equilibrium method (IPEM) are used to develop design equations. MAM yields design equations to use when the torque multiplication factor is defined at discrete number of design positions, as well as in continuous forms. IPEM requires continuous forms, but it reduces the torque generation problem into a function generation problem. Design equations with one, two, three, and four unknowns are developed for precision position synthesis; and they are used to formulate optimum synthesis process using many design positions that requires no iteration. Generation of infinite torque multiplication factor and synthesis of quick-return four-bar mechanism to generate specified advance-to-return time ratio are also considered. The synthesized four-bar mechanisms replace circular and non-circular external and internal gear drives. Several industrial application examples are included. The second part of the article considers the slider-crank mechanism.


1983 ◽  
pp. 595-607 ◽  
Author(s):  
R. Avilés ◽  
Ma. B. Ajuria ◽  
J. A. Tárrago

Sign in / Sign up

Export Citation Format

Share Document