A Structured Study on the Dynamic Bifurcation Behavior of a Continuous Ethanol Fermentor

2021 ◽  
pp. 116777
Author(s):  
Juan Carlos Ojeda Toro ◽  
Izabela Dobrosz-Gómez ◽  
Miguel Ángel Gómez-García ◽  
Joana d'Arc Prat Farran ◽  
Immaculada Massana Hugas
2013 ◽  
Vol 811 ◽  
pp. 643-646
Author(s):  
Xue Song Zhou ◽  
Mo Chen ◽  
You Jie Ma

In order to study on the problem of voltage stability of power system, this paper describes the static bifurcation analysis and the dynamic bifurcation analysis in voltage stabilization analysis of power system and its relationship with the voltage stability,discusses the voltage instability caused by two main bifurcation formal definition, the occurrence of the conditions and the calculation of the bifurcation point, and points out advantages and disadvantages of various algorithms. Finally the paper looks forward to further study of the bifurcation theory in terms of voltage stability.


2011 ◽  
Vol 141 ◽  
pp. 43-48 ◽  
Author(s):  
Lin Yu Su ◽  
Yi Qiang Sun ◽  
Jian Ming Wen

In this paper, there are two kinds of impact vibration models: rigid impact model and elastic model. The dynamic responses of the two kinds of gear impact models are compared by experimental and numerical analysis. Firstly, establish the motion equations of the two models. Secondly, verify the correctness of the mechanical models through experimental analysis. Comparing the results of the numerical and experimental analysis, we can find that the intensity noise of gear vibration is reduced by the elastic boundary. Finally, the dynamic bifurcation characteristic of dimensionless excitations magnitude and backlash will be analyzed as well.


Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Jiaqiang E

Based on the lumped mass method, a torsional vibration model of the planetary gear system is established considering the nonlinear factors such as friction, time-varying meshing stiffness, backlash, and comprehensive error. The Runge–Kutta numerical method is used to analyze the motion characteristics of the system with various parameters and the influence of tooth friction on the bifurcation and chaos characteristics of the system. The numerical simulation results show that the system has rich bifurcation behavior with the excitation frequency, damping ratio, comprehensive error amplitude, load and backlash, and experiences multiple periodic motion and chaotic motion. Tooth friction makes the bifurcation behavior of the system fuzzy in the high frequency and heavy load areas, makes the chaos of the system restrained in the low-damping ratio and light load areas, advances the bifurcation point of the system in the small comprehensive error amplitude area, and makes the period window of the chaos area larger in the large-backlash area, which makes the bifurcation behavior of the system more complex.


1999 ◽  
Vol 66 (1) ◽  
pp. 3-9 ◽  
Author(s):  
V. Tvergaard

Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed.


2017 ◽  
Vol 34 (7) ◽  
pp. 2379-2395 ◽  
Author(s):  
Reza Ebrahimi ◽  
Mostafa Ghayour ◽  
Heshmatallah Mohammad Khanlo

Purpose This paper aims to present bifurcation analysis of a magnetically supported coaxial rotor model in auxiliary bearings, which includes gyroscopic moments of disks and geometric coupling of the magnetic actuators. Design/methodology/approach Ten nonlinear equations of motion were solved using the Runge–Kutta method. The vibration responses were analyzed using dynamic trajectories, power spectra, Poincaré maps, bifurcation diagrams and the maximum Lyapunov exponent. The analysis was carried out for different system parameters, namely, the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position. Findings It was shown that dynamics of the system could be significantly affected by varying these parameters, so that the system responses displayed a rich variety of nonlinear dynamical phenomena, including quasi-periodicity, chaos and jump. Next, some threshold values were provided with regard to the design of appropriate parameters for this system. Therefore, the proposed work can provide an effective means of gaining insights into the nonlinear dynamics of coaxial rotor–active magnetic bearing systems with auxiliary bearings in the future. Originality/value This paper considered the influences of the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position on the bifurcation behavior of a magnetically supported coaxial rotor system in auxiliary bearings.


2015 ◽  
Vol 82 (9) ◽  
Author(s):  
X. Chen ◽  
S. A. Meguid

In this paper, we investigate the asymmetric bifurcation behavior of an initially curved nanobeam accounting for Lorentz and electrostatic forces. The beam model was developed in the framework of Euler–Bernoulli beam theory, and the surface effects at the nanoscale were taken into account in the model by including the surface elasticity and the residual surface tension. Based on the Galerkin decomposition method, the model was simplified as two degrees of freedom reduced order model, from which the symmetry breaking criterion was derived. The results of our work reveal the significant surface effects on the symmetry breaking criterion for the considered nanobeam.


Sign in / Sign up

Export Citation Format

Share Document