Effect of surfactant addition and viscosity of the continuous phase on flow fields and kinetics of drop formation in a flow-focusing microfluidic device

2021 ◽  
pp. 117183
Author(s):  
Ioannis Kiratzis ◽  
Nina M. Kovalchuk ◽  
Mark J.H. Simmons ◽  
Daniele Vigolo
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 662
Author(s):  
Nikita A. Filatov ◽  
Anatoly A. Evstrapov ◽  
Anton S. Bukatin

Droplet microfluidics is an extremely useful and powerful tool for industrial, environmental, and biotechnological applications, due to advantages such as the small volume of reagents required, ultrahigh-throughput, precise control, and independent manipulations of each droplet. For the generation of monodisperse water-in-oil droplets, usually T-junction and flow-focusing microfluidic devices connected to syringe pumps or pressure controllers are used. Here, we investigated droplet-generation regimes in a flow-focusing microfluidic device induced by the negative pressure in the outlet reservoir, generated by a low-cost mini diaphragm vacuum pump. During the study, we compared two ways of adjusting the negative pressure using a compact electro-pneumatic regulator and a manual airflow control valve. The results showed that both types of regulators are suitable for the stable generation of monodisperse droplets for at least 4 h, with variations in diameter less than 1 µm. Droplet diameters at high levels of negative pressure were mainly determined by the hydrodynamic resistances of the inlet microchannels, although the absolute pressure value defined the generation frequency; however, the electro-pneumatic regulator is preferable and convenient for the accurate control of the pressure by an external electric signal, providing more stable pressure, and a wide range of droplet diameters and generation frequencies. The method of droplet generation suggested here is a simple, stable, reliable, and portable way of high-throughput production of relatively large volumes of monodisperse emulsions for biomedical applications.


2001 ◽  
Author(s):  
D. Palaniappan

Abstract Exact analytical solutions for steady-state axisymmetric creeping flows in and around a compound multiphase droplet are presented. The solutions given here explain the droplet fluid interactions in uniform and nonuniform flow fields. The compound droplet has a two-sphere geometry with the two spherical surfaces (of unequal radii) intersecting orthogonally. The surface tension forces are assumed to be sufficiently large so that the interfaces have uniform curvature. The singularity solutions for the uniform and paraboloidal flows in the presence of a compound droplet are derived using the method of reflections. The exact solutions for the velocity and pressure fields in the continuous and dispersed phases are given in terms of the fundamental singularities (Green’s functions) and their derivatives. It is found that flow fields and the drag forces depend on two parameters namely, the viscosity ratio and the radii ratio. In the case of paraboloidal flows, a single or a pair of eddies is noticed in the continuous phase for various values of these parameters. The eddies changes their size and shape if the size of the droplet is altered. These observations may be useful in the study of hydrodynamic interactions of compound droplets in complex situations. It is found that the Stokes resistance is greater when the liquid volume is large compared to the vapor volume in uniform flow. It is also noticed that the maximum value of the drag in paraboloidal flow depends on the viscosity ratio and significantly on the liquid volume in the dispersed phase. The exact solutions presented here may be useful for boundary integral formulations that are based on special kernels and also in validating numerical algorithms and codes on multiphase flow and droplet-fluid interactions.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 229 ◽  
Author(s):  
Dongjin Lee ◽  
Chaenyung Cha

Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.


2004 ◽  
Vol 19 (11) ◽  
pp. 3359-3363 ◽  
Author(s):  
C-S. Tsai ◽  
Sanboh Lee ◽  
Tinh Nguyen

The kinetics of methanol transport in 2-hydroxyethyl methacrylate (HEMA) homopolymer and 75/25 and 50/50 mol fraction HEMA/DHPMA (2,3-dihydroxypropyl methacrylate) copolymers at five different temperatures has been investigated using the sorption experiment technique. A combined case I and case II diffusion model was used to describe the transport processes. Four replicates for each temperature of each material having a nominal thickness of 0.1 mm were immersed in methanol maintained at 35, 40, 45, 50, and 55 °C, and the mass uptake as a function of time was measured gravimetrically. Experimental results are found to be in good agreement with model prediction at all temperatures and for all three materials. Both the diffusion coefficients of case I transport and velocity of case II transport increase with increasing temperature. D values at low temperatures (35 and 40 °C), which are in the 10−9 cm2/s range, of the HEMA homopolymer are less than those of the copolymers. On the other hand, the activation energies of case I transport of the copolymers are substantially higher than those of the HEMA homopolymer; however, the level of DHPMA loading in the copolymer does not seem to affect the activation energy. In addition, thermodynamic heat and free energy of mixing values indicate heat is released when HEMA/DHPMA copolymers are exposed to methanol and that the solvent/copolymer systems exist as a continuous phase. In contrast, the methanol/HEMA homopolymer system exists as separate phases.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000275-000280 ◽  
Author(s):  
Houari Cobas Gomez ◽  
Mario Ricardo Gongora-Rubio ◽  
Bianca Oliveira Agio ◽  
Vanessa Tiemi Kimura ◽  
Adriano Marim de Oliveira ◽  
...  

Nanoprecipitation is a nanonization technique used for nanoparticle generation. Several fields, like pharmacology and fine chemistry, make use of such technique. Typically are used a bulky batch mechanical processes rendering high polydispersity index of generated nanoparticles, poorly particle size reproducibility and energy wasting. LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic device designed to fabricate polymeric nanocapsules for Hydrocortisone drug encapsulation, using nanoprecipitation route. Monodisperse Hydrocortisone nanocapsules were obtained with sizes (Tp) from 188.9 nm to 459.1 nm with polydispersity index (PDI) from 0.102 to 0.235.


Soft Matter ◽  
2020 ◽  
Vol 16 (41) ◽  
pp. 9506-9518 ◽  
Author(s):  
Venoos Amiri Roodan ◽  
Jenifer Gómez-Pastora ◽  
Ioannis H. Karampelas ◽  
Cristina González-Fernández ◽  
Eugenio Bringas ◽  
...  

Integrated computational fluid dynamics and magnetics simulation is employed to analyze the effects of magnetic force on the formation and manipulation of ferrofluid droplets within a flowing non-magnetic continuous phase in a microfluidic device.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 743
Author(s):  
Zhaoqin Yin ◽  
Zemin Huang ◽  
Xiaohui Lin ◽  
Xiaoyan Gao ◽  
Fubing Bao

The demand for highly controllable droplet generation methods is very urgent in the medical, materials, and food industries. The droplet generation in a flow-focusing microfluidic device with external mechanical vibration, as a controllable droplet generation method, is experimentally studied. The effects of vibration frequency and acceleration amplitude on the droplet generation are characterized. The linear correlation between the droplet generation frequency and the external vibration frequency and the critical vibration amplitude corresponding to the imposing vibration frequency are observed. The droplet generation frequency with external mechanical vibration is affected by the natural generation frequency, vibration frequency, and vibration amplitude. The droplet generation frequency in a certain microfluidic device with external vibration is able to vary from the natural generation frequency to the imposed vibration frequency at different vibration conditions. The evolution of dispersed phase thread with vibration is remarkably different with the process without vibration. Distinct stages of expansion, shrinkage, and collapse are observed in the droplet formation with vibration, and the occurrence number of expansion–shrinkage process is relevant with the linear correlation coefficient.


Sign in / Sign up

Export Citation Format

Share Document