Chemical and isotopic characterization of hydrocarbon gas traces in porewater of very low permeability rocks: The example of the Callovo-Oxfordian argillites of the eastern part of the Paris Basin

2009 ◽  
Vol 260 (3-4) ◽  
pp. 269-277 ◽  
Author(s):  
Alain Prinzhofer ◽  
Jean Pierre Girard ◽  
Stéphane Buschaert ◽  
Yvon Huiban ◽  
Sonia Noirez
Author(s):  
Mario Villalobos-Forbes ◽  
Germain Esquivel-Hernández ◽  
Ricardo Sánchez-Murillo ◽  
Rolando Sánchez-Gutiérrez ◽  
Ioannis Matiatos

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Luana Bontempo ◽  
Daniela Bertoldi ◽  
Pietro Franceschi ◽  
Fabio Rossi ◽  
Roberto Larcher

Umbrian tobacco of the Virginia Bright variety is one of the most appreciated tobaccos in Europe, and one characterized by an excellent yield. In recent years, the Umbria region and local producers have invested in introducing novel practices (for production and processing) focused on environmental, social, and economic sustainability. Due to this, tobacco from Umbria is a leading commodity in the global tobacco industry, and it claims a high economic value. The aim of this study is then to assess if elemental and isotopic compositions can be used to protect the quality and geographical traceability of this particular tobacco. For the first time the characteristic value ranges of the stable isotope ratios of the bio-elements as a whole (δ2H, δ13C, δ15N, δ18O, and δ34S) and of the concentration of 56 macro- and micro-elements are now available, determined in Virginia Bright tobacco produced in two different areas of Italy (Umbria and Veneto), and from other worldwide geographical regions. The ranges of variability of elements and stable isotope ratios had slightly different results, according to the three geographical origins considered. In particular, Umbria samples presented significantly lower content of metals potentially dangerous for human health. The results of this first exploratory work highlight the possibility of characterizing tobacco from Umbria, and suggest widening the scope of the survey throughout Italy and foreign regions, in order to be used to describe the geographical origin of tobacco in general and verify the origin of the products on the market.


2019 ◽  
Vol 34 (5) ◽  
pp. 522-539
Author(s):  
Emiliano Di Luzio ◽  
Ilenia Arienzo ◽  
Simona Boccuti ◽  
Anna De Meo ◽  
Gianluca Sottili

2021 ◽  
Vol 40 (11) ◽  
pp. 823-830
Author(s):  
Nikita Bondarenko ◽  
Sherilyn Williams-Stroud ◽  
Jared Freiburg ◽  
Roman Makhnenko

Carbon sequestration activities are increasing in a global effort to mitigate the effects of greenhouse gas emissions on the climate. Injection of wastewater and oil-field fluids is known to induce seismic activity. This makes it important to understand how that risk relates to CO2 injection. Injection of supercritical CO2 into the Cambrian Mt. Simon sandstone in Illinois Basin induced microseismicity that was observed below the reservoir, primarily in the Precambrian crystalline basement. Geomechanical and flow properties of rock samples from the involved formations were measured in the laboratory and compared with geophysical log data and petrographic analysis. The controlling factors for induced microseismicity in the basement seem to be the hydraulic connection between the reservoir and basement rock and reactivation of pre-existing faults or fractures in the basement. Additionally, the presence of a laterally continuous low-permeability layer between reservoir and basement may have prevented downward migration of pore pressure and reactivation of critically stressed planes of weakness in the basement. Results of the geomechanical characterization of this intermediate layer indicate that it may act as an effective barrier for fluid penetration into the basement and that induced microseismicity is likely to be controlled by the pre-existing system of faults. This is because the intact material is not expected to fail under the reservoir stress conditions.


2018 ◽  
pp. 205-230 ◽  
Author(s):  
R. Sánchez-Murillo ◽  
E. Aguirre-Dueñas ◽  
M. Gallardo-Amestica ◽  
P. Moya-Vega ◽  
C. Birkel ◽  
...  

Author(s):  
Huynh Anh Hoang ◽  
Huynh Quyen

Since the end of the 20th century, nanomaterials such as carbon nanotubes (CNTs) have been considered as one of the greatest achievements in the field of material science. Nowadays, further research on CNTs is still being conducted to unfold the full potential of this material. Generally, CNTs production methods have been extensively studied, specifically on CNTs synthesis route via liquefied hydrocarbon gas in the presence of a catalyst. From the synthesized material, further investigation including characterization and investigation of this nano size system’s effects on the physics, chemical, mechanical rules applied to macroscopic (bulk materials) and microscopic systems (atoms, molecules). In this present work, we demonstrated the research results of the synthesis of nano-carbon materials from a liquefied hydrocarbon gas (Liquefied Petroleum Gas: LPG) and its application to red phenol absorption in the liquid phase. CNTs used in this study were synthesized by chemical vapor deposition (CVD) method with Fe /ℽ-Al2O3 as the catalyst. The research results demonstrated that CNTs synthesized from LPG in this work were reported to be multi-walled tubes (MWCNTs: Multi-Walled Carbon Nanotubes) with physical characteristics including average internal and external diameters were of 6 nm and 17 nm, respectively. The measured specific surface suggested by BET data was 200 m2/g. The experimental study of red phenol adsorption by MWCNTs showed that the adsorption process followed both Freundlich and Langmuir isotherm adsorption models with the maximum monolayer adsorption capacity of 47.2 mg/g. The research results again showed that it was possible to synthesize MWCNTs from hydrocarbon gas sources via the CVD method by utilizing catalysts. Additionally, red phenol absorption via such material had shown to follow both Freundlich and Langmuir isotherm model, which allow further characterization of this material using Raman, EDX, SEM, TEM, BET, in order to extend the library database on the characterization of the reported synthesized material.


2015 ◽  
Vol 46 (6) ◽  
pp. 929-942 ◽  
Author(s):  
Z. Ženišová ◽  
P. P. Povinec ◽  
A. Šivo ◽  
R. Breier ◽  
M. Richtáriková ◽  
...  

Hydrogeochemical investigations and spatial variations studies on the distribution of water isotopes and radiocarbon in the groundwater of Žitný Island (Rye Island) were carried out. Žitný Island represents the largest groundwater reservoir in Central Europe (about 10 Gm3). The chemical composition of the groundwater of Žitný Island depends mainly on the chemical composition of Danube water, as well as on the length of its infiltration from the Danube River. The groundwater is characterized by potamogenic mineralization, and its chemical composition is influenced by anthropogenic contamination. Sub-surface water profiles showed enriched δ18O levels up to around 20 m water depth, and depleted values for deeper waters. The observed isotopic composition of the groundwater is similar to Danube water, suggesting that the Danube River is the main source of the Žitný Island groundwater. The core of the sub-surface 14C profile represents contemporary groundwater with 14C values above 80 pMC.


Sign in / Sign up

Export Citation Format

Share Document