Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network

2020 ◽  
Vol 203 ◽  
pp. 104053
Author(s):  
Inioluwa Christianah Afolabi ◽  
Segun Isaiah Popoola ◽  
Olugbenga Solomon Bello
2018 ◽  
Vol 25 (4) ◽  
pp. 581-604 ◽  
Author(s):  
Sayiter Yildiz

Abstract In this study, ANN (artificial neural network) model was applied to estimate the Ni(II) removal efficiency of peanut shell based on batch adsorption tests. The effects of initial pH, metal concentrations, temperature, contact time and sorbent dosage were determined. Also, COD (chemical oxygen demand) was measured to evaluate the possible adverse effects of the sorbent during the tests performed with varying temperature, pH and sorbent dosage. COD was found as 96.21 mg/dm3 at pH 2 and 54.72 mg/dm3 at pH 7. Also, a significant increase in COD value was observed with increasing dosage of the used sorbent. COD was found as 12.48 mg/dm3 after use of 0.05 g sorbent and as 282.78 mg/dm3 after use of 1 g sorbent. During isotherm studies, the highest regression coefficient (R2) value was obtained with Freundlich isotherm (R2 = 0.97) for initial concentration and with Temkin isotherm for sorbent dosage. High pseudo-second order kinetic model regression constants were observed (R2 = 0.95-0.99) during kinetic studies with varying pH values. In addition, Ni(II) ion adsorption on peanut shell was further defined with pseudo-second order kinetic model, since qe values in the second order kinetic equation were very close to the experimental values. The relation between the estimated results of the built ANN model and the experimental results were used to evaluate the success of ANN modeling. Consequently, experimental results of the study were found to be in good agreement with the estimated results of the model.


2020 ◽  
Vol 168 ◽  
pp. 00026
Author(s):  
Liliia Frolova ◽  
Mykola Kharytonov ◽  
Iryna Klimkina ◽  
Oleksandr Kovrov ◽  
Andrii Koveria

Plasma method is used to synthesize manganese ferrite. The basic properties of ferrite are determined by IR spectroscopy, UV spectroscopy, X-ray phase analysis, vibration magnetometry. The paper shows that the use of magnetically controlled sorbent allows to purify waste waters from chromium (III). The process of adsorption of chromium cations (III) is investigated. The kinetics of the process is studied. To describe the equilibrium isotherms, the experimental data are analysed by the models of Langmuir, Freundlich isotherms. Pseudo-first order, pseudo-second-order, and Weber-Morris are used to elucidate the kinetic parameters and mechanism of the adsorption process. It has been established that the removal of Cr (III) cations is described by the pseudo-second order of the Langmuir reaction and mechanism.


2014 ◽  
Vol 1073-1076 ◽  
pp. 955-959
Author(s):  
Ruo Zheng Li ◽  
Hong Yang ◽  
Xin Jin

Lignite activated carbon was provided through lignite which is treated specially. The adsorption capacity and mechanism of COD from Coal gasification wastewater by lignite activated carbon have been studied.The adsorption capacities of lignite activated carbon at different times were obtained by concentration of COD in the remainder solution. Three simplified kinetic models: pseudo-first-order, pseudo-second-order, intraparticle diffusion equations were adopted to examine the mechanism of the adsorption process. The results showed that the adsorption can be expressed by the pseudo-second-order model. The adsorption balance capacity was obtained as 50.8mg·g-1 (298K), and the adsorption balance capacity decreased with increasing of temperature, which showed that the adsorption process was exothermic. The adsorption activation energy (Ea) was calculated as 5.76kJ·mol-1, and it showed that the adsorption process was Physical adsorption. This study explored new treatment channels for lignite comprehensive utilization..


2019 ◽  
Vol 59 (1) ◽  
pp. 345-359 ◽  
Author(s):  
Cosmin Anitescu ◽  
Elena Atroshchenko ◽  
Naif Alajlan ◽  
Timon Rabczuk

Sign in / Sign up

Export Citation Format

Share Document