River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter

Chemosphere ◽  
2020 ◽  
pp. 128571 ◽  
Author(s):  
Shweta Kumari ◽  
R. Naresh Kumar
2020 ◽  
Vol 1003 ◽  
pp. 109-114
Author(s):  
Shuang Zhao ◽  
Dan Li ◽  
Wei Hua Yang ◽  
Zhang Jian Zou

Natural organic matter (NOM) is easily soluble in surface water and difficult to be removed thoroughly. In this paper, polyaluminum chloride-polyacrylamide (PAC-PAM), as a new water treatment material, was proposed to solve this problem by coagulation treatment. The performance, mechanism and kinetic process of NOM removal were investigated systematically. Results showed that the optimum dosage of PAC and PAM was 10 mg/L and 0.5 mg/L for NOM removal of Yellow River water. In this condition, NOM could be removed effectively due to positively charged PAM addition. The size, growth rate and recovery factor of flocs generated by PAC-PAM reached 419 μm, 34.9 μm/min and 0.48, respectively, while only 355 μm, 27.9 μm/min and 0.31 were obtained by PAC. Moreover, the adsorption and bridging effect of PAM assisted the formation of multi-branched flocs, which brought fast settle velocity and low turbidity of supernatant after coagulation.


2011 ◽  
Vol 183-185 ◽  
pp. 1312-1316
Author(s):  
Gang Wen ◽  
Jun Ma ◽  
Xing Fang

Ozone alone and catalytic ozonation of natural organic matter had been carried out in semibatch model reactor. The experimental results demonstrated that ozonation alone and catalytic ozonation are equivalent with minimization of natural organic matter(NOM), with the removal rate of TOC, UV254 about 7 % and 50 % respectively. But it is a promising method for changing the molecular weight and specially for enhancement of biodegradation. The AOC in river water was 233 ug L-1, which increase up to 325 ug L-1, 677 ug L-1, 633 ug L-1 in ozonation alone, catalytic ozonation (H2O2) and catalytic ozonation (ZnO) after 30 minutes reaction respectively. Through the research, it can be conclued that catalytic ozonation-BAC may be an promising way for water treatment.


2015 ◽  
Vol 57 (20) ◽  
pp. 9061-9069
Author(s):  
Sanghyun Jeong ◽  
Tien Vinh Nguyen ◽  
Saravanamuthu Vigneswaran ◽  
Jaya Kandasamy ◽  
Dharma Dharmabalan

2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


2021 ◽  
Author(s):  
Mathieu Lapointe ◽  
Heidi Jahandideh ◽  
Jeffrey Farner ◽  
Nathalie Tufenkji

Aggregation combined with gravitational separation is the most commonly used method to treat water globally, but it carries a significant economic and environmental burden as the chemicals used in the process (e.g., coagulants) generate ~8 million tons of metal-based sludge waste annually. To simultaneously deal with the issues of process sustainability, cost, and efficiency, we developed materials reengineered from pristine or waste fibers to serve as super-bridging agents, adsorbents, and ballast media. This study shows that these sustainable fiber-based materials considerably increased the floc size (~6630 µm) compared to conventional physicochemical treatment using a coagulant and a flocculant (~520 µm). The fiber-based materials also reduced coagulant (up to 40%) and flocculant usage (up to 60%). Moreover, the unprecedented size of flocs produced using fiber-based materials (up to ~13 times larger compared to conventional treatment) enabled easy floc removal by screening, thereby eliminating the need for a settling tank, a large and costly process unit. Our results show that fiber-based materials can be effective solutions at removing classical (e.g., natural organic matter (NOM) and phosphorus) and emerging contaminants (e.g., microplastics and nanoplastics). Due to their large size (> 3000 µm), some Si-grafted and Fe-grafted fiber-based materials can be easily recovered from settled/screened sludge and reused multiple times for coagulation/flocculation. Our results also show that these materials could be used in synergy with coagulants and flocculants to improve settling in existing water treatment processes. Furthermore, these reusable materials combined with separation via screening could allow global water treatment facilities to reduce their capital and operating costs as well as their environmental footprint.


2020 ◽  
Author(s):  
Tchemongo B. Berté ◽  
Anthony S. Chen ◽  
Riya A. Mathew ◽  
Sheyda Shakiba ◽  
Stacey M. Louie

Immobilization of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) facilitates their removal and reuse in water treatment applications. Composite materials of electrostatically-bound TiO<sub>2</sub> NPs and zeolite particles have been proposed, but limited mechanistic studies are available on their performance in complex media. This study delineates the relative importance of homo- and heteroaggregation, water chemistry, and surface fouling by natural organic matter (NOM) on the photocatalytic degradation of diethyltoluamide (DEET) by TiO<sub>2</sub>-zeolite composites. Zeolite adsorbs a portion of the DEET, rendering it unavailable for degradation; corrections for this adsorption depletion allowed appropriate comparison of the reactivity of the composites to the NPs alone. The TiO<sub>2</sub>-zeolite composites showed enhanced DEET degradation in moderately hard water (MHW) compared to deionized water (DIW), likely attributable to the influence of HCO<sub>3</sub><sup>−</sup>, whereas a net decline in reactivity was observed for the TiO<sub>2</sub> NPs alone upon homoaggregation in MHW. The composites also better maintained reactivity in the presence of NOM in MHW, as removal of Ca<sup>2+</sup> onto the zeolite mitigated fouling of the TiO<sub>2</sub> surface by NOM. However, NOM induced partial dissociation of the composites. DEET byproduct formation, identified by quadrupole–time of flight (QTOF) mass spectrometry, was generally unaffected by the zeolite, while NOM fouling favored de-ethylation over hydroxylation products. Overall, the most significant factor influencing TiO<sub>2</sub> reactivity toward DEET was NOM adsorption, followed by homoaggregation, electrolytes (here, MHW versus DIW), and heteroaggregation. These findings can inform a better understanding of NP reactivity in engineered water treatment applications.


2007 ◽  
Vol 7 (18) ◽  
pp. 2651-2655 ◽  
Author(s):  
M.A. Zazouli ◽  
S. Nasseri . ◽  
A.H. Mahvi . ◽  
A.R. Mesdaghinia . ◽  
M. Younecian . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document