Tolerance of glacial-melt stoneflies (Plecoptera) and morphological responses of chloride cells to stream salinity

Chemosphere ◽  
2022 ◽  
pp. 133655
Author(s):  
Heather Fair ◽  
Roman Lanno ◽  
Peter C. Smiley
Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Author(s):  
Derek Burton ◽  
Margaret Burton

Metabolism consists of the sum of anabolism (construction) and catabolism (destruction) with the release of energy, and achieving a fairly constant internal environment (homeostasis). The aquatic external environment favours differences from mammalian pathways of excretion and requires osmoregulatory adjustments for fresh water and seawater though some taxa, notably marine elasmobranchs, avoid osmoregulatory problems by retaining osmotically active substances such as urea, and molecules protecting tissues from urea damage. Ion regulation may occur through chloride cells of the gills. Most fish are not temperature regulators but a few are regional heterotherms, conserving heat internally. The liver has many roles in metabolism, including in some fish the synthesis of antifreeze seasonally. Maturing females synthesize yolk proteins in the liver. Energy storage may include the liver and, surprisingly, white muscle. Fish growth can be indeterminate and highly variable, with very short (annual) life cycles or extremely long cycles with late and/or intermittent reproduction.


1982 ◽  
Vol 242 (3) ◽  
pp. R380-R389 ◽  
Author(s):  
J. K. Foskett ◽  
T. E. Machen ◽  
H. A. Bern

Effects of prolactin on transport properties of opercular membranes from seawater-adapted tilapia, Sarotherodon mossambicus, have been examined. These membranes are high conductance (average Gt approximately 4 mS.cm-2) tissues with short-circuit currents (I) equal to net chloride secretion. Despite high Gt, nonlinear current-voltage relationships suggest that opercular membranes cannot be classified as "leaky" tissues. Variability among membranes is reflected in a linear relationship between I and Gt with a slope equal to 26 mV and the zero-current Gt intercept equal to 0.45 mS.cm-2. Prolactin injections decrease I and Gt in a dose-dependent manner. Phosphodiesterase inhibition, without effect on I in untreated fish, often partially reverses these prolactin effects. Gt-I data from prolactin-treated fish yield a slope of 18 mV and a Gt intercept of 0.10 mS.cm-2. The effects of prolactin are discussed in terms of conventional equivalent circuit analysis. Discrepancies between predictions based on this model and the actual data indicate that an alternative interpretation, based on a heterogeneous cell population, is more accurate. Analysis of this circuit suggests that the ratio of paracellular to active transport pathway conductances associated with chloride cells is constant and that differences in Gt and I are due to parallel changes in these conductances. Prolactin may effectively "remove" chloride cells from these membranes as well as inhibit (reversible by elevated cellular cAMP levels) active transport pathway conductance of remaining cells.


2020 ◽  
pp. 096032712098420
Author(s):  
Ahmet Topal ◽  
Arzu Gergit ◽  
Mustafa Özkaraca

We investigated changes in 8-hydroxy-2-deoxyguanosine (8-OHdG) activity which is a product of oxidative DNA damage, histopathological changes and antioxidant responses in liver and gill tissues of rainbow trout, following a 21-day exposure to three different concentrations of linuron (30 µg/L, 120 µg/L and 240 µg/L). Our results indicated that linuron concentrations caused an increase in LPO levels of liver and gill tissues ( p < 0.05). While linuron induced both increases and decreases in GSH levels and SOD activity, CAT activity was decreased by all concentrations of linuron ( p < 0.05). The immunopositivity of 8-OHdG was detected in the hepatocytes of liver and in the epithelial and chloride cells of the secondary lamellae of the gill tissues. Our results suggested that linuron could cause oxidative DNA damage by causing an increase in 8-OHdG activity in tissues, and it induces histopathological damage and alterations in the antioxidant parameters of the tissues.


2020 ◽  
pp. 1-10
Author(s):  
Hrusikesh Patro ◽  
K. Raja Reddy ◽  
Suresh B Lokhande ◽  
Tim Walker

1979 ◽  
Vol 80 (1) ◽  
pp. 96-117 ◽  
Author(s):  
C Sardet ◽  
M Pisam ◽  
J Maetz

Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the chloride cell's tubular reticulum is separated by deep apical junctions from the external environment. Based on these observations we discuss how solutes could transfer across the epithelium.


1994 ◽  
Vol 178 (1) ◽  
pp. 113-129 ◽  
Author(s):  
E.G. Abal ◽  
N. Loneragan ◽  
P. Bowen ◽  
C.J. Perry ◽  
J.W. Udy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document