Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory

2016 ◽  
Vol 1462 ◽  
pp. 55-62 ◽  
Author(s):  
Artak E. Kostanyan ◽  
Andrey A. Erastov
2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Justine Yasappan ◽  
Ángela Jiménez-Casas ◽  
Mario Castro

Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian) fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.


Author(s):  
David H. Weir ◽  
Duane T. McRuer

This paper summarizes applicable theory and data from simulation experiments on the directional control of automobiles subjected to crosswind gust disturbances. Measured driver/vehicle describing functions for several subjects and replications are presented and interpreted. It is shown that the driver's steering outputs can be explained as functions of lateral position and heading, although alternate interpretations involving path-angle and path-rate feedbacks are considered. The results demonstrate that driver/vehicle response properties can be modeled and measured for a class of important closed-loop driving tasks. They provide further direct experimental verification of the applicability of driver/vehicle theory to situations where the driver obtains his information from a real-world visual simulation.


1992 ◽  
Vol 114 (1) ◽  
pp. 131-136 ◽  
Author(s):  
S. Nagarajan ◽  
D. A. Turcic

In this work a theoretical method is developed to identify critical speeds for elastic linkage systems. Critical speeds are input operating speeds where the response of the system is larger when compared to neighboring noncritical speeds. A survey of the literature reveals that theoretical methods of determining the critical operating speeds with experimental verification have not been applied by researchers for linkage systems with large number of elastic degrees of freedom and with all links considered as elastic members. Research works that address this problem are usually limited to mechanisms with only one link treated as an elastic member. The method of determining critical speeds in this work is an efficient implementation of Floquet theory, and is applicable for mechanism systems with large numbers of elastic degrees of freedom and with all links considered as elastic members. Experimental verification for the results obtained using this approach is provided in Nagarajan and Turcic (1991).


2015 ◽  
Vol 645-646 ◽  
pp. 543-547
Author(s):  
Wei Feng Tang ◽  
Guo Ming Xia ◽  
An Ping Qiu ◽  
Yan Su

The output-current of silicon microgyroscope is at the level of 10-7A, so the requirements for circuits’ SNR are very high. This paper conducts the simulation of closed-loop driving circuits in Cadence on the basis of a RLC series resonant circuit. It turns out that experimental results fit the simulation which has a great significance for improving the property of circuits. First of all, the operating principle of silicon microgyroscope is introduced. Secondly, a RLC series resonant circuit is established by measuring Q value and driving frequency. Then the overall simulation is conducted in Cadence combined with chips’ models offered by the manufacturers. Finally, the accuracy of simulation is verified by experiments. Experimental results show that, the relative error of driving sense signal’s value is 0.5%, for stability time the value is 0.6% and for driving frequency the value is 38ppm. Experimental results agree well with the simulation, which confirms simulation’s accuracy. This has a great significance for improving the property of circuits.


Sign in / Sign up

Export Citation Format

Share Document