Microfluidics as a high-throughput solution for chromatographic process development – The complexity of multimodal chromatography used as a proof of concept

2021 ◽  
pp. 462618
Author(s):  
André Nascimento ◽  
Mariana N. São Pedro ◽  
Inês F. Pinto ◽  
Maria Raquel Aires-Barros ◽  
Ana M. Azevedo
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mathias Fink ◽  
Monika Cserjan-Puschmann ◽  
Daniela Reinisch ◽  
Gerald Striedner

AbstractTremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination. This outcome demonstrates the explanatory power of HTP µ-bioreactor data and the suitability of this platform as a screening tool in upstream development of microbial systems. Fast, reliable, and transferable screening data significantly reduce experiments in fully controlled bioreactor systems and accelerate process development at lower cost.


2014 ◽  
Vol 111 (12) ◽  
pp. 2486-2498 ◽  
Author(s):  
Georgina Espuny Garcia del Real ◽  
Jim Davies ◽  
Daniel G. Bracewell

2021 ◽  
Vol 26 (6) ◽  
pp. 579-590
Author(s):  
Sam Elder ◽  
Carleen Klumpp-Thomas ◽  
Adam Yasgar ◽  
Jameson Travers ◽  
Shayne Frebert ◽  
...  

Current high-throughput screening assay optimization is often a manual and time-consuming process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based Bayesian optimization-based algorithm was developed as part of the National Center for Advancing Translational Sciences (NCATS) ASPIRE (A Specialized Platform for Innovative Research Exploration) Initiative to accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as proof of concept for biological assay development and system operationalization. Compared with a brute-force approach that sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization algorithm could find suitable conditions for optimal assay performance by testing 21 assay conditions on average, with up to 20 conditions being tested simultaneously, as confirmed by repeated simulation. The algorithm could achieve a sevenfold reduction in costs for lab supplies and high-throughput experimentation runtime, all while being controlled from a remote site through a secure connection. Based on this proof of concept, this technology is expected to be applied to more complex biological assays and automated chemistry reaction screening at NCATS, and should be transferable to other institutions. Graphical Abstract


2012 ◽  
Vol 7 (10) ◽  
pp. 1203-1215 ◽  
Author(s):  
Katrin Treier ◽  
Annette Berg ◽  
Patrick Diederich ◽  
Katharina Lang ◽  
Anna Osberghaus ◽  
...  

2018 ◽  
Vol 295 ◽  
pp. S142
Author(s):  
J.L. Nguyen ◽  
A. Maier ◽  
J. Ovesen ◽  
N. Kleinstreuer ◽  
R. Judson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document