Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables

Author(s):  
Shima Jafarzadeh ◽  
Abdorreza Mohammadi Nafchi ◽  
Ali Salehabadi ◽  
Nazila Oladzad-abbasabadi ◽  
Seid Mahdi Jafari
Author(s):  
Amra Bratovcic

Bio-nanocomposite films and edible coatings constitute of metal nanoparticles incorporated in biopolymers on the shelf life and quality of food were studied. It has been seen that the application of bio-nanocomposite films and edible coatings to fruits and vegetables may lead to decreasing the color changes, respiration rate, weight loss and extended shelf life, delaying ripening and being environmentally friendly. Physical-chemical properties such as moisture barrier, oxygen scavengers, and antimicrobial properties have been reviewed. In addition, the physicochemical characterization which covers surface and structure characterization, as well as contact angle, thickness, transparency, colour characterization and thermal stability were included. Moreover, it has been seen that novel bio-nanocomposite films and edible coatings are able to enhance the texture, improve the product appearance, and prolong the shelf-life by creating semi-permeable barriers to gases and moisture, such as carbon dioxide and oxygen.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2438
Author(s):  
Josemar Gonçalves de Oliveira de Oliveira Filho ◽  
Marcela Miranda ◽  
Marcos David Ferreira ◽  
Anne Plotto

Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 990
Author(s):  
Annachiara Pirozzi ◽  
Giovanna Ferrari ◽  
Francesco Donsì

The usage of edible coatings (ECs) represents an emerging approach for extending the shelf life of highly perishable foods, such as fresh and fresh-cut fruits and vegetables. This review addresses, in particular, the use of reinforcing agents in film-forming solutions to tailor the physicochemical, mechanical and antimicrobial properties of composite coatings. In this scenario, this review summarizes the available data on the various forms of nanocellulose (NC) typically used in ECs, focusing on the impact of their origin and chemical or physical treatments on their structural properties (morphology and shape, dimension and crystallinity) and their functionality. Moreover, this review also describes the deposition techniques of composite ECs, with details on the food engineering principles in the application methods and formulation optimization. The critical analysis of the recent advances in NC-based ECs contributes to a better understanding of the impact of the incorporation of complex nanoparticles in polymeric matrices on the enhancement of coating properties, as well as on the increase of shelf life and the quality of fruits and vegetables.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2821
Author(s):  
Amalia Carmen Miteluț ◽  
Elisabeta Elena Popa ◽  
Mihaela Cristina Drăghici ◽  
Paul Alexandru Popescu ◽  
Vlad Ioan Popa ◽  
...  

The food industry nowadays is facing new challenges in terms of sustainability and health implications of packaging and processing techniques. Due to their desire for new and natural products coupled with changes in lifestyle, consumers are looking for food products that have been less processed but possess longer shelf life and maintain nutritional and sensorial proprieties during storage. These requirements represent real challenges when dealing with highly perishable food products, such as fruits and vegetables. Thus, in recent years, edible coatings have been intensively developed and studied because of their capacity to improve the quality, shelf life, safety, and functionality of the treated products. Edible coatings can be applied through different techniques, like dipping, spraying, or coating, in order to control moisture transfer, gas exchange, or oxidative processes. Furthermore, some functional ingredients can be incorporated into an edible matrix and applied on the surface of foods, thus enhancing safety or even nutritional and sensory attributes. In the case of coated fruits and vegetables, their quality parameters, such as color, firmness, microbial load, decay ratio, weight loss, sensorial attributes, and nutritional parameters, which are very specific to the type of products and their storage conditions, should be carefully monitored. This review attempts to summarize recent studies of different edible coatings (polysaccharides, proteins, lipids, and composites) as carriers of functional ingredients (antimicrobials, texture enhancers, and nutraceuticals) applied on different minimally processed fruits and vegetables, highlighting the coating ingredients, the application methods and the effects on food shelf life and quality.


Author(s):  
T.K. Hazarika ◽  
C. Lalhriatpuia ◽  
Rody Ngurthankhumi ◽  
Esther Lalruatsangi ◽  
H. Lalhmachhuani

Post-harvest losses of fruits are a matter of concern for all those nations whose economy is based on horticulture. Fruits face tremendous loss due to old-fashioned preservation practice and ignorance about the preservation strategies. Consumers around the world demand for food of high-quality, without chemical preservatives and an extended shelf life. New technological advances in edible coatings for food may hold promise in extending shelf life, reducing packaging layers, meeting food safety and quality requirements. Among various coatings, edible coatings have been proven one of the best biologically safe preservative coatings for different types of foods because of its film-forming properties, antimicrobial actions, bio degradability and biochemical properties. It acts as a natural barrier to moisture and oxygen, which are the main agents of deterioration of fruits and vegetables. Edible coatings have the ability to prolong shelf life of the fruits by minimizing the rate of respiration and maintaining quality attributes. It has antifungal and antibacterial properties which provide a defensive barrier against microbial contamination. The present review describes about the different edible coatings and their potential application for enhancing the postharvest life and quality of different types of fruits.


2020 ◽  
Author(s):  
Renu Jaisinghani ◽  
Vishnu Vasant Dayare

Edible film and coatings are been looked upon for preservation of fruits, vegetables and bakery products. Extended shelf life with preservation of natural properties of food is always been a challenge; by incorporation of bio-actives in edible coatings, the shelf life can be increased as they are known for their antioxidant and antimicrobial properties. With this view, present study was undertaken, where edible coatings were prepared from starch, gelatin and glycerol and incorporated with Lemon peel extracts and coated on apples for increased shelf life. Antimicrobial activity of Lemon peel extracts was studied on eight organisms by broth dilution method and were found to be effective at concentration 3mg/mL-9mg/mL for bacteria and 50mg/mL- 90mg/mL for fungi. Fuji apples coated with starch-gelatin based edible formulation containing lemon peel extracts were studied for the effect of coating on fruit shelf life during storage for 28 days. Incorporation of lemon peel extract into edible coating improved shelf life with reducing rate of browning of apples.


Sign in / Sign up

Export Citation Format

Share Document