ANTIBACTERIAL, ANTIFUNGAL ACTIVITY OF COMPOSITE EDIBLE COATING INCORPORATED WITH CITRUS LIMON L. PEEL EXTRACT AND IT’S EFFECT ON FUJI APPLES.

2020 ◽  
Author(s):  
Renu Jaisinghani ◽  
Vishnu Vasant Dayare

Edible film and coatings are been looked upon for preservation of fruits, vegetables and bakery products. Extended shelf life with preservation of natural properties of food is always been a challenge; by incorporation of bio-actives in edible coatings, the shelf life can be increased as they are known for their antioxidant and antimicrobial properties. With this view, present study was undertaken, where edible coatings were prepared from starch, gelatin and glycerol and incorporated with Lemon peel extracts and coated on apples for increased shelf life. Antimicrobial activity of Lemon peel extracts was studied on eight organisms by broth dilution method and were found to be effective at concentration 3mg/mL-9mg/mL for bacteria and 50mg/mL- 90mg/mL for fungi. Fuji apples coated with starch-gelatin based edible formulation containing lemon peel extracts were studied for the effect of coating on fruit shelf life during storage for 28 days. Incorporation of lemon peel extract into edible coating improved shelf life with reducing rate of browning of apples.

2021 ◽  
Author(s):  
Kofi Owusu-Akyaw Oduro

Postharvest losses are rampant due to lack of proper storage conditions and handling of the fresh food products. The perishable nature of fruits and vegetables makes their shelf life limited due to some extrinsic factors such as some environmental conditions and preservation conditions as well as some intrinsic factors such as respiration rate, ethylene production and transpiration. Among the other postharvest technologies available, edible coatings seems to be one novel method which has been verified to have a positive and safe approach to extending the shelf life of products. This type of packaging is made from various natural resources like polysaccharide, protein and lipid materials. Edible packaging materials can be divided into two main groups including edible coatings and edible films. It has so many benefits such as serving as a moisture barrier, oxygen scavenger, ethylene scavenger, antimicrobial properties among others. Different methods of application of the edible coating on the food materials include; dipping, spraying, brushing, layer by layer among others. There have been several verifications of the positive impact of edible coatings/films on pome fruits, Citrus fruits, Stone fruits, tropical and exotic fruits, berries, melon, tomatoes and others.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 764
Author(s):  
Nishant Kumar ◽  
Pratibha ◽  
Neeraj ◽  
Anka Trajkovska Petkoska ◽  
Sawsan Ali AL-Hilifi ◽  
...  

The polysaccharide based composite biomaterial (coating) used in preserving fruits and vegetables during storage is attracting increased attention as it is biodegradable material that prolongs shelf life. In the present investigation, chitosan–pullulan (50:50) composite edible coating was prepared with pomegranate peel extract (0.02 g/mL) as an active antioxidant agent. The effect of treatment with pomegranate peel extract enriched chitosan–pullulan composite edible coating on the shelf life of mango fruits during 18 days of storage period at room (23 °C) and cold (4 °C) temperature was evaluated. Results of the present study demonstrated that the application of chitosan–pullulan composite edible coating significantly (p ≤  0.05) influences the storage life of mango fruits at both storage temperatures. The chitosan–pullulan composite edible coating reduced the physiological loss in weight (PLW), and maintained total soluble solids (TSS), acidity and pH of coated mango fruits as compared to the control. In addition, fruit sensory quality such as freshness, color, taste and texture were also retained by the treatment. Furthermore, sustained firmness, phenolic content and antioxidant activity confirmed the effectiveness of the pomegranate peel extract enriched chitosan–pullulan composite edible coating on mango fruits. The phenolic, flavonoid and antioxidant activity of coated fruits were retained by pomegranate peel rich edible coating. Therefore, the chitosan–pullulan (50:50) combination with pomegranate peel extract can be used as an alternative preservation method to prolong the shelf life of mango fruits at room and cold storage conditions. However, more in-depth studies are required at farm and transit level without affecting the postharvest quality of mango fruits, providing more revenue for farmers and minimizing postharvest losses.


Author(s):  
Cindy Novianti ◽  
Fenny Martha Dwivany

Musa troglodytarum L. (‘Pisang Tongkat Langit’), a banana cultivar which originated from Eastern Indonesia, has an economic potential due to the high β-carotene content on its pulp. Being a climacteric fruit, M. troglodytarum has a short shelf-life that can reduce fruit quality. In this study, the effect of 1.25% (w/v) chitosan coating on M. troglodytarum fruit shelf-life and ACS1 and ACO1 gene expression analysis using quantitative PCR were evaluated. Results showed that the application of chitosan coating delayed the fruit ripening process for two days by delaying several fruit physical and chemical changes. ACS1 and ACO1 gene expression analysis showed a different expression pattern, the expression level was lower on chitosan-coated fruits on the first day compared to control. In conclusion, chitosan-based edible coating delayed M. troglodytarum fruit ripening and changed the ACS1 and ACO1 gene expression pattern, compared with the chitosan coating effect on Cavendish banana which also prolonged fruit ripening and suppressed ACS1 and ACO1 expression in a previous research.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wenru Liu ◽  
Yong Shen ◽  
Na Li ◽  
Jun Mei ◽  
Jing Xie

China is one of the largest producers of red pitaya in the world and responsible for disposal of the huge amount of peel generated as a waste. The objective of this research was to evaluate the effect of the addition of red pitaya peel extract (RPPE, 1.0%, 2.0%, or 3.0% (w/v)) and 0.1% ε-polylysine (ε-PL) to a fish gelatin edible coating on the preservation of deshelled crayfish (Procambarus clarkii) during refrigerated storage. The physicochemical and water migration of the samples were determined during 8-day storage. Deshelled crayfish packaged in edible coatings exhibited significantly (p<0.05) lower values for total volatile basic nitrogen (TVB-N), K value maintenance, and free amino acids (FAAs). This study shows that application of an edible coating incorporated with RPPE and ε-PL is an effective strategy in retarding the quality deterioration in deshelled crayfish during storage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Camila Ianhes Martins de Araujo ◽  
Leticia Bicudo Bonato ◽  
Carolina Bragine Mangucci ◽  
Geoffroy Roger Pointer Malpass ◽  
Mônica Hitomi Okura ◽  
...  

PurposeThe purpose of this study was to prepare alginate and chitosan-based edible coatings incorporating Schinus terebinthifolia and Piper nigrum essential oils. The prepared films were applied on minimally processed pineapple to study the microbial inhibition of Gram + and Gram – bacteria and fungi and to evaluate the shelf life of the minimally processed fruit.Design/methodology/approachIn this study alginate and chitosan-based edible coating were prepared and applied on minimally processed pineapple. The edible coatings were evaluated microscopically, by the power of reducing microbial contamination, by the shelf-life improvement.FindingsThis study demonstrates that the incorporation of the essential oils P. nigrum and S. terebinthifolia contributed to the inhibition of all the microorganisms studied and improved the shelf life of minimally processed pineapple. This is especially true for P. nigrum in the chitosan-based edible coating, where the shelf life was improved by 45 days.Research limitations/implicationsBecause of the pandemic, it was not possible to perform the sensory analyses of the antimicrobial alginate and chitosan-based edible coatings prepared.Practical implicationsFrom the results obtained, it is possible to state that the antimicrobial alginate and chitosan-based edible coatings incorporating S. terebinthifolia and P. nigrum essential oils can be used on minimally processed fruits and prolong their shelf life.Social implicationsDue to the lifestyle of modern consumers, who demand speed and practicality and the need to consume fruits for health and quality of life, minimally processed fruits covered with edible coatings incorporating natural antimicrobial additives can provide a practical solution.Originality/valueTo the best of the authors’ knowledge, this is the first time that alginate and chitosan-based edible coatings that incorporate P. nigrum and S. terebinthifolia applied on minimally processed fruit, have been studied.


2020 ◽  
Vol 67 (1) ◽  
Author(s):  
S Sabu ◽  
T Ashita ◽  
S Stephy

The present study investigated the effect of chitosan combined with lemon peel extract coating on the quality and shelf life of refrigerated yellowfin tuna meat using physicochemical, microbial and sensory assessments. Fresh yellowfin tuna meat as chunks were divided into five lots and coated with lemon peel extract (LPE) and chitosan (CH) at different concentrations viz., control, C (0%), LPE 1%, CH 1%, LPE+CH 1% and LPE+CH 2% (w/v). Sensory, biochemical and microbial quality of the samples were observed for 12 days during 4°C refrigerated storage. Sensory evaluation revealed that shelf life of yellowfin tuna under the study was 6 days for control, 8 days each for LPE (1%) and CH (1%), 10 and 12 days for LPE+CH (1%) and LPE+CH (2%) respectively. Significantly higher pH, total volatile basic nitrogen (TVB-N), tri-methyl amino nitrogen (TMA-N), peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values were recorded in control samples than coated samples (p<0.05). Significant reduction in microbial counts were recorded in CH+LPE treated samples (p<0.05) compared to the LPE or CH coating alone, in the later stages of storage. Coated samples with combination of LPE+CH 1% and 2% indicated better storage qualities compared to other treatments. The present study revealed that LPE along with chitosan edible coating enhanced the shelf life of yellowfin tuna meat.


Sign in / Sign up

Export Citation Format

Share Document