scholarly journals Weakening of the anisotropy of surface roughness in ultra-precision turning of single-crystal silicon

2015 ◽  
Vol 28 (4) ◽  
pp. 1273-1280 ◽  
Author(s):  
Minghai Wang ◽  
Ben Wang ◽  
Yaohui Zheng
2008 ◽  
Vol 375-376 ◽  
pp. 11-16 ◽  
Author(s):  
Ming Hai Wang ◽  
Ze Sheng Lu

According to the size effect theory established on the concept of geometrically necessary dislocations and results of nano-indentation experiments, a novel brittle-ductile mechanism of ultra-precision turning of single crystal silicon is proposed. The accurate critical chip thickness is firstly calculated on the basis of theoritical analysis. A macro-micro cutting model is created based on the brittle-ductile transition mechanism. Finally, the results of study are testified through experiments.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Xin ◽  
Wei Liu

During the wire electrical discharge machining (WEDM) process, a large number of discharge pits and a recast layer are easily generated on the workpiece surface, resulting in high surface roughness. A discharge forming cutting-electrochemical machining method for fabricating single-crystal silicon is proposed in this study to solve this problem. On the same processing equipment, single-crystal silicon is first cut using the discharge forming cutting method. Second, electrochemical anodic reaction technology is used to dissolve the discharge pits and recast layer on the single-crystal silicon surface. The machining mechanism of this process, the surface elements of the processed single-crystal silicon and a comparison of the kerf width are analyzed through experiments. On this basis, the influence of the movement speed of the copper foil electrode during electrochemical anodic dissolution on the final surface roughness is qualitatively analyzed. The experimental results show that discharge forming cutting-electrochemical machining can effectively eliminate the electrical discharge pits and recast layer, which are caused by electric discharge cutting, on the surface of single-crystal silicon, thereby reducing the surface roughness of the workpiece.


2001 ◽  
Vol 90 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Mitsuhiro Shikida ◽  
Takehiro Masuda ◽  
Daisuke Uchikawa ◽  
Kazuo Sato

Sign in / Sign up

Export Citation Format

Share Document