scholarly journals Monitoring for Ultra-Precision Turning of Single Crystal Silicon using Diamond Tool with Large Nose Radius and Small Chamfer at Cutting Edge

Author(s):  
Ryuichi IWAMOTO ◽  
Eiji KONDO ◽  
Satoko NAGAYAMA ◽  
Norio KAWAGOISHI
2008 ◽  
Vol 375-376 ◽  
pp. 11-16 ◽  
Author(s):  
Ming Hai Wang ◽  
Ze Sheng Lu

According to the size effect theory established on the concept of geometrically necessary dislocations and results of nano-indentation experiments, a novel brittle-ductile mechanism of ultra-precision turning of single crystal silicon is proposed. The accurate critical chip thickness is firstly calculated on the basis of theoritical analysis. A macro-micro cutting model is created based on the brittle-ductile transition mechanism. Finally, the results of study are testified through experiments.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2014 ◽  
Vol 609-610 ◽  
pp. 751-757 ◽  
Author(s):  
Jia Chun Wang ◽  
Ming Ming Xin ◽  
Si Yu Cao ◽  
Teng Zhao

During ultra-precision cutting of brittle materials, the wear of diamond tool seriously affects the quality of machined surface. By molecular dynamics modeling of nanometric cutting, the generation of graphitization and its formation process at the cutting edge of tool are observed. By analyzing the process, the reason of the graphitization wear is mainly thermo-chemical reactions. By calculating the changes of coordination numbers of the tool atoms, graphitization conversion rate keeps increasing along the cutting process but gets stable after a certain length, which indicates the graphitization wear will occur in the same process.


2011 ◽  
Vol 239-242 ◽  
pp. 3236-3239 ◽  
Author(s):  
Ying Chun Liang ◽  
Zhi Guo Wang ◽  
Ming Jun Chen ◽  
Jia Xuan Chen ◽  
Zhen Tong

Molecular dynamics simulations of the single crystal silicon nanoscale cutting with a diamond tool in ductile mode are carried out to investigate the adhesion phenomenon. After relaxation the silicon atoms on the surface reconstruct to make the potential decrease. The silicon atoms close to the diamond tool have the lowest potential (<-5.5 eV) and form a stable structure with surface atoms on the tool surface.


Wear ◽  
2003 ◽  
Vol 255 (7-12) ◽  
pp. 1380-1387 ◽  
Author(s):  
Jiwang Yan ◽  
Katsuo Syoji ◽  
Jun’ichi Tamaki

Sign in / Sign up

Export Citation Format

Share Document