Noise-free logic and Set-Reset latch operation in a triple-well potential system

2020 ◽  
Vol 68 ◽  
pp. 178-190
Author(s):  
Rong Gui ◽  
Yudan Yang ◽  
Yuangen Yao ◽  
Guanghui Cheng
Keyword(s):  
Author(s):  
Florian Matthey-Prakash

What does it mean for education to be a fundamental right, and how may children benefit from it? Surprisingly, even when the right to education was added to the Indian Constitution as Article 21A, this question received barely any attention. This book identifies justiciability (or, more broadly, enforceability) as the most important feature of Article 21A, meaning that children and their parents must be provided with means to effectively claim their right from the state. Otherwise, it would remain a ‘right’ only on paper. The book highlights how lack of access to the Indian judiciary means that the constitutional promise of justiciability is unfulfilled, particularly so because the poor, who cannot afford quality private education for their children, must be the main beneficiaries of the right. It then deals with possible alternative means the state may provide for the poor to claim the benefits under Article 21A, and identifies the grievance redress mechanism created by the Right to Education Act as a potential system of enforcement. Even though this system is found to be deficient, the book concludes with an optimistic outlook, hoping that rights advocates may, in the future, focus on improving such mechanisms for legal empowerment.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Beilei Gong ◽  
Yuanbing Shen ◽  
Huiyan Li ◽  
Xiaojun Li ◽  
Xia Huan ◽  
...  

AbstractOwing to strong and tunable surface plasmon resonance (SPR) effect and good biocompatibility, gold nanoparticles have been suggested to be a versatile platform for a broad range of biomedical applications. In this study, a new nanoplatform of thermo-responsive polymer encapsulated gold nanorods incorporating indocyanine green (ICG) was designed to couple the photothermal properties of gold nanorods (AuNRs) and the photodynamic properties of ICG to enhance the photodynamic/photothermal combination therapy (PDT/PTT). In addition to the significantly increased payload and enhancing photostability of ICG, the polymer shell in the nanoplatform also has thermo-responsive characteristics that can control the release of drugs at tumour sites upon the laser irradiation. On the basis of these improvements, the nanoplatform strongly increased drug aggregation at the tumour site and improved the photothermal/photodynamic therapeutic efficacy. These results suggest that this nanoplatform would be a great potential system for tumour imaging and antitumour therapy.


Author(s):  
Nicolás F. Soria ◽  
Mitchell K. Colby ◽  
Irem Y. Tumer ◽  
Christopher Hoyle ◽  
Kagan Tumer

In complex engineering systems, complexity may arise by design, or as a by-product of the system’s operation. In either case, the root cause of complexity is the same: the unpredictable manner in which interactions among components modify system behavior. Traditionally, two different approaches are used to handle such complexity: (i) a centralized design approach where the impacts of all potential system states and behaviors resulting from design decisions must be accurately modeled; and (ii) an approach based on externally legislating design decisions, which avoid such difficulties, but at the cost of expensive external mechanisms to determine trade-offs among competing design decisions. Our approach is a hybrid of the two approaches, providing a method in which decisions can be reconciled without the need for either detailed interaction models or external mechanisms. A key insight of this approach is that complex system design, undertaken with respect to a variety of design objectives, is fundamentally similar to the multiagent coordination problem, where component decisions and their interactions lead to global behavior. The design of a race car is used as the case study. The results of this paper demonstrate that a team of autonomous agents using a cooperative coevolutionary algorithm can effectively design a Formula racing vehicle.


2009 ◽  
Vol 9 (1) ◽  
pp. 145-159 ◽  
Author(s):  
B. Mazzorana ◽  
J. Hübl ◽  
S. Fuchs

Abstract. During the entire procedure of risk assessment for hydrologic hazards, the selection of consistent and reliable scenarios, constructed in a strictly systematic way, is fundamental for the quality and reproducibility of the results. However, subjective assumptions on relevant impact variables such as sediment transport intensity on the system loading side and weak point response mechanisms repeatedly cause biases in the results, and consequently affect transparency and required quality standards. Furthermore, the system response of mitigation measures to extreme event loadings represents another key variable in hazard assessment, as well as the integral risk management including intervention planning. Formative Scenario Analysis, as a supplement to conventional risk assessment methods, is a technique to construct well-defined sets of assumptions to gain insight into a specific case and the potential system behaviour. By two case studies, carried out (1) to analyse sediment transport dynamics in a torrent section equipped with control measures, and (2) to identify hazards induced by woody debris transport at hydraulic weak points, the applicability of the Formative Scenario Analysis technique is presented. It is argued that during scenario planning in general and with respect to integral risk management in particular, Formative Scenario Analysis allows for the development of reliable and reproducible scenarios in order to design more specifically an application framework for the sustainable assessment of natural hazards impact. The overall aim is to optimise the hazard mapping and zoning procedure by methodologically integrating quantitative and qualitative knowledge.


2020 ◽  
Vol 7 (1) ◽  
pp. 01-11
Author(s):  
Shantu Saikia ◽  
◽  
Francis Iawphniaw

Thermal fluctuations or noise assisted particle dynamics in a driven underdamped inhomogeneous periodic potential system is studied. This forms an archetypal model to study different Physical and Biological processes in the microscopic domain. The particles are shown to exhibit directed transport aided by these fluctuations without the application of any external bias. This phenomenon, also known as ratchet effect, is a counterintuitive phenomenon in which systems in the microscopic domain harnesses the energy of the random fluctuations to do constructive work. Also in the presence of random thermal fluctuations or noise, the particles undergo diffusion, the amount of which can be controlled by controlling the different parameters of the system. This can have important technological applications.


Author(s):  
Shou-Fu Tian ◽  
Mei-Juan Xu ◽  
Tian-Tian Zhang

Under investigation in this work is a generalized higher-order beam equation, which is an important physical model and describes the vibrations of a rod. By considering Lie symmetry analysis, and using the power series method, we derive the geometric vector fields, symmetry reductions, group invariant solutions and power series solutions of the equation, respectively. The convergence analysis of the power series solutions are also provided with detailed proof. Furthermore, by virtue of the multipliers, the local conservation laws of the equation are derived as well. Furthermore, an effective and direct approach is proposed to study the symmetry-preserving discretization for the equation via its potential system. Finally, the invariant difference models of the generalized beam equation are successfully constructed. Our results show that it is very useful to construct the difference models of the potential system instead of the original equation.


2021 ◽  
pp. 1-36
Author(s):  
Benjamin Knisely ◽  
Monifa Vaughn-Cooke

Abstract Human beings are physically and cognitively variable, leading to a wide array of potential system use cases. To design safe and effective systems for highly heterogeneous populations, engineers must cater to this variability to minimize the chance of error and system failure. This can be a challenge because of the increasing costs associated with providing additional product variety. Most guidance for navigating these trade-offs is intended for late-stage design, when significant resources have been expended, thus risking expensive redesign or exclusion of users when new human concerns become apparent. Despite the critical need to evaluate accommodation-cost trade-offs in early stages of design, there is currently a lack of structured guidance. In this work, an approach to function modeling is proposed that allows the simultaneous consideration of human and machine functionality. This modeling approach facilitates the allocation of system functions to humans and machines to be used as an accessible baseline for concept development. Further, a multi-objective optimization model was developed to allocate functions with metrics for accommodation and cost. The model was demonstrated on a design case study. 16 senior mechanical engineering students were recruited and tasked with performing the allocation task manually. The results were compared to the output of the optimization model. Results indicated that participants were unable to produce concepts with the same accommodation-cost efficiency as the optimization model. Further, the optimization model successfully produced a wide range of potential product concepts, demonstrating its utility as a decision-aid.


Sign in / Sign up

Export Citation Format

Share Document