Control of coal-bearing claystone composition by sea level and redox conditions: An example from the Upper Paleozoic of the Datong Basin, North China

2021 ◽  
Vol 211 ◽  
pp. 106204
Author(s):  
Linsong Liu ◽  
Hao Zhang ◽  
Thomas J. Algeo ◽  
Kenan Zhang ◽  
Hanlie Hong ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2021 ◽  
pp. 103670
Author(s):  
Xin Jin ◽  
Viktória Baranyi ◽  
Marcello Caggiati ◽  
Marco Franceschi ◽  
Corey J. Wall ◽  
...  

2019 ◽  
Vol 156 (10) ◽  
pp. 1805-1819 ◽  
Author(s):  
Jing Huang ◽  
Yali Chen ◽  
Xuelei Chu ◽  
Tao Sun

AbstractThe Steptoean Positive Carbon Isotope Excursion (SPICE) is globally distributed in late Cambrian sedimentary records but controversially heterogeneous in its magnitudes. Here we use multiple geochemical proxies to investigate the late Cambrian carbonates from the Tangwangzhai section in North China, which were deposited in a shallow coastal environment with three depositional sequences (S1–S3). Each sequence comprises a transgressive systems tract (TST) and a highstand systems tract (HST). The REE + Y and trace element records are consistent with the depositional condition and indicate that terrigenous influence was more significant in the TST than HST. δ13Ccarb and δ34SCAS are low in the TST relative to HST, consistent with the scenario that terrigenous inputs were profoundly aggressive to seawater by introducing 13C-depleted and 34S-depleted materials. Within the TST of S2, the SPICE excursion shows a scaled-down δ13Ccarb positive shift (∼1.7 ‰) relative to its general records (∼4–6 ‰); the corresponding δ34SCAS show no positive excursion. This ‘atypical’ SPICE record is attributed to enhanced 13C-depleted and 34S-depleted terrigenous influence during the TST, which would reduce the amplitude of δ13Ccarb excursion, and even obscure δ34SCAS excursion. Meanwhile the subaerial unconformity at the base of TST would also cause a partially missing and a ‘snapshot’ preservation. Our study confirms significant local influence to the SPICE records, and further supports the heterogeneity and low sulphate concentrations of the late Cambrian seawater, because of which the SPICE records may be vulnerable to specific depositional conditions (e.g. sea-level, terrigenous input).


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1792
Author(s):  
Wenlong Zhou ◽  
Xiangyun Hu ◽  
Shilong Yan ◽  
Hongdang Guo ◽  
Wei Chen ◽  
...  

Datong Basin is a Cenozoic fault basin located in the central part of the North China Block with strong tectonic activity. The unique geological environment of Datong Basin is believed to have good conditions for the formation of geothermal resources. Based on the research of the classification, genesis and geothermal geological characteristics of geothermal resources, the geological conditions, seismic activity, volcanic activity, geophysical exploration results, terrestrial heat flow and hot springs in Datong Basin are analyzed. The possibility of the occurrence of geothermal resources in Datong Basin is determined, and the genesis and occurrence mechanisms of geothermal resources in Datong Basin are judged. The results show that Datong Basin satisfies the geological geothermal conditions of the formation of geothermal resources and is of great research value. The formation of geothermal resources in the Datong Basin is affected by the uplift of the Qinghai–Tibet Plateau and the destruction of the North China Craton. The geothermal resources in Datong Basin are formed by the combination of modern volcanic activity and strong inner-plate tectonic activities. The geothermal system is a combination of convective hydrothermal systems and partial melt systems. At the same time, it is concluded that the key research areas for the occurrence of geothermal resources are mainly in the northeastern part of the basin. It is recommended to carry out detailed and comprehensive exploration of the northeastern part of Datong Basin.


2006 ◽  
Vol 143 (3) ◽  
pp. 393-410 ◽  
Author(s):  
CHENG SHAO-PING ◽  
LI CHUAN-YOU ◽  
YANG GUI-ZHI ◽  
ZHOU SHI-WEI

The Sanggan River is an alluvial river flowing through a graben basin system of the northern Shanxi Rift Zone, North China. During Pleistocene times, the river reach in the Datong Basin was affected successively by various external variables, such as invasion by basaltic flow, along-valley faulting and climatic change. Therefore, it provides excellent constraints for differentiating tectonically driven and climate-related fluvial incision in the context of tectonic subsidence. Based on equilibrium profile analysis, K–Ar dating of basalts (0.74–0.41 Ma), studies of the river terrace and of stream action history, we present a conceptual model for differentiating fault-driven and climate-related fluvial incision by the river. The results show that fluvial incision induced by tectonic lowering of the base-level due to along-valley movement on the Sanggan River fault is equal to fault displacement. The amount of post-basalt fluvial incision of the reach upstream from the lava dam is 23 to 25 m, of which the fault-driven and climate-related incisions are 15 m and 8 to 10 m, respectively, the former predominating over the latter. The total amount of incision in the lava dam reach is 40 to 47 m, of which the fault-driven and climate-related incisions are 10 m and 30–37 m, respectively; here the latter is predominant over the former. Since 0.41 ± 0.10 Ma, the rate of fluvial incision of the lava dam reach of the river has reached 98–115 m/Ma, which is 1.5–2 times as great as those of the reaches upstream and downstream from the lava dam. The higher rate of fluvial incision can be attributed to high water levels supplied by the onset and maintenance of backwater conditions in the reach upstream from the lava dam, due to the long period of warm and humid climate in this region. Plucking, abrasion and knickpoint migration appear to be the primary erosional processes in the lava dam reach.


Sign in / Sign up

Export Citation Format

Share Document