Proteomics in colorectal cancer translational research: Biomarker discovery for clinical applications

2013 ◽  
Vol 46 (6) ◽  
pp. 466-479 ◽  
Author(s):  
Meike de Wit ◽  
Remond J.A. Fijneman ◽  
Henk M.W. Verheul ◽  
Gerrit A. Meijer ◽  
Connie R. Jimenez
Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 159
Author(s):  
Yao Peng ◽  
Yuqiang Nie ◽  
Jun Yu ◽  
Chi Chun Wong

Colorectal cancer (CRC) is one of the leading cancers that cause cancer-related deaths worldwide. The gut microbiota has been proved to show relevance with colorectal tumorigenesis through microbial metabolites. By decomposing various dietary residues in the intestinal tract, gut microbiota harvest energy and produce a variety of metabolites to affect the host physiology. However, some of these metabolites are oncogenic factors for CRC. With the advent of metabolomics technology, studies profiling microbiota-derived metabolites have greatly accelerated the progress in our understanding of the host-microbiota metabolism interactions in CRC. In this review, we briefly summarize the present metabolomics techniques in microbial metabolites researches and the mechanisms of microbial metabolites in CRC pathogenesis, furthermore, we discuss the potential clinical applications of microbial metabolites in cancer diagnosis and treatment.


2021 ◽  
Vol 11 (6) ◽  
pp. 535
Author(s):  
Bader Almuzzaini ◽  
Jahad Alghamdi ◽  
Alhanouf Alomani ◽  
Saleh AlGhamdi ◽  
Abdullah A. Alsharm ◽  
...  

Biomarker discovery would be an important tool in advancing and utilizing the concept of precision and personalized medicine in the clinic. Discovery of novel variants in local population provides confident targets for developing biomarkers for personalized medicine. We identified the need to generate high-quality sequencing data from local colorectal cancer patients and understand the pattern of occurrence of variants. In this report, we used archived samples from Saudi Arabia and used the AmpliSeq comprehensive cancer panel to identify novel somatic variants. We report a comprehensive analysis of next-generation sequencing results with a coverage of >300X. We identified 466 novel variants which were previously unreported in COSMIC and ICGC databases. We analyzed the genes associated with these variants in terms of their frequency of occurrence, probable pathogenicity, and clinicopathological features. Among pathogenic somatic variants, 174 were identified for the first time in the large intestine. APC, RET, and EGFR genes were most frequently mutated. A higher number of variants were identified in the left colon. Occurrence of variants in ERBB2 was significantly correlated with those of EGFR and ATR genes. Network analyses of the identified genes provide functional perspective of the identified genes and suggest affected pathways and probable biomarker candidates. This report lays the ground work for biomarker discovery and identification of driver gene mutations in local population.


Oncotarget ◽  
2017 ◽  
Vol 8 (21) ◽  
pp. 35460-35472 ◽  
Author(s):  
Fan Zhang ◽  
Yuanyuan Zhang ◽  
Weiwei Zhao ◽  
Kui Deng ◽  
Zhuozhong Wang ◽  
...  

2009 ◽  
Vol 136 (5) ◽  
pp. A-749
Author(s):  
Sarah A. Goodbrand ◽  
Douglas Lamont ◽  
Michael A. Ferguson ◽  
Robert J. Steele

Author(s):  
Paula Álvarez-Chaver ◽  
Loretta De Chiara ◽  
Vicenta Soledad Martínez-Zorzano

Author(s):  
Yue Wang Webster ◽  
Ernst R Dow ◽  
Mathew J Palakal

Even though numerous tools and technologies have been developed to meet this need with various degrees of success, a conceptual framework is needed to fully realize the value of those tools and technologies. The authors propose Complex System (CS) to be the logical foundation of such a framework. Since translational research is a spiral and dynamic process. With the CS mindset, they designed a multi-layer architecture called HyGen (Hypotheses Generation Framework) to address the challenges faced by translational researchers. In order to evaluate the framework, the authors carried out heuristic and quantitative tests in Colorectal Cancer disease area. The results demonstrate the potential of this hybrid approach to bridge silos and to identify hidden links among clinical observations, drugs, genes and diseases, which may eventually lead to the discovery of novel disease targets, biomarkers and therapies.


Sign in / Sign up

Export Citation Format

Share Document