An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: A coupled ductile–brittle damage model

2011 ◽  
Vol 200 (45-46) ◽  
pp. 3127-3138 ◽  
Author(s):  
O. Kintzel ◽  
J. Mosler
2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Author(s):  
Iva´n C. Ca´bulo-Pe´rez ◽  
Juan P. Casas-Rodri´guez

The objective of this research is to study the damage behavior of bulk adhesive and single lap joint (SLJ) specimens during low cycle fatigue (LCF). Fatigue tests under constant stress amplitude were done and strain response was measured through cycles to failure using the bulk adhesive and SLJ data. A non linear damage model was used to fit experimental results. Identification of the damage parameters for bulk adhesive was obtained from the damage against accumulated plastic strain plot. It is shown that the plastic strain can be obtained from the constant stress test if the instantaneous elastic modulus, i.e. modulus affected by damage, is evaluated for each cycle. On the other hand, damage in SLJ was seen mainly in the adhesive for itself — no substrate failure — this fact is used to propose that fatigue response in the joint is due to continuum damage accumulation in the adhesive as the number of cycles increases. Damage behavior under compressive loads was not taken into account but good correlation of numerical and experimental data was obtained. It was found that damage evolution behaves in a non linear manner as the plastic deformation grows for each cycle: on fatigue onset an accelerated damage grow is observed, then a proportional evolution, and finally a rapid failure occurs; this characteristics were seen in both the SLJ and bulk adhesive specimen. So far, this research takes the damage model found in a standard adhesive specimen and assumes it is accurate enough to represent the damage behavior of the SLJ configuration.


Author(s):  
John J. Aumuller ◽  
Jie Chen ◽  
Vincent A. Carucci

Delayed unit coker drums operate in a severe service environment that precludes long term reliability due to excessive shell bulging and cracking of shell joint and shell to skirt welds. Thermal fatigue is recognized as the leading damage mechanism and past work has provided an idealized description of the thermo-mechanical mechanism via local hot and cold spot formation to quantify a lower bound life estimate for shell weld failure. The present work extends this idealized thermo-mechanical damage model by evaluating actual field data to determine a potential upper bound life estimate. This assessment also provides insight into practical techniques for equipment operators to identify design and operational opportunities to extend the service life of coke drums for their specific service environments. A modern trend of specifying higher chromium and molybdenum alloy content for drum shell material in order to improve low cycle fatigue strength is seen to be problematic; rather, the use of lower alloy materials that are generally described as fatigue tough materials are better suited for the high strain-low cycle fatigue service environment of coke drums. Materials such as SA 204 C (C – ½ Mo) and SA 302 B (C – Mn – ½ Mo) or SA 302 C (C – Mn – ½ Mo – ½ Ni) are shown to be better candidates for construction in lieu of low chromium alloy steel materials such as SA 387 grades P11 (1¼ Cr – ½ Mo), P12 (1 Cr – ½ Mo), P22 (2¼ Cr – 1 Mo) and P21 (3 Cr – 1 Mo).


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1768
Author(s):  
Lizhen Huang ◽  
Weilian Qu ◽  
Ernian Zhao

The multiaxial fatigue critical plane method can be used to evaluate the extremely-low-cycle fatigue (ELCF) damage of beam-to-column welded joints in steel frameworks subjected to strong seismic activity. In this paper, fatigue damage models using structural detail parameters are studied. Firstly, the fatigue properties obtained from experiments are adopted to assess ELCF life for steel frameworks. In these experiments, two types of welded specimens, namely, plate butt weld (PB) and cruciform load-carrying groove weld (CLG), are designed according to the structural details of steel beam and box column joints, in which both structural details and welded factors are taken into account. Secondly, experiments are performed on three full-scale steel welded beam-to-column joints to determine the contribution of stress and/or strain to damage parameters. Finally, we introduce a modification of the most popular fatigue damage model of Fatemi and Socie (FS), modified by us in a previous study, for damage evaluation, and compare this with Shang and Wang (SW) in order to examine the applicability of the fatigue properties of PB and CLG. This study shows that the modified FS model using the fatigue properties of CLG can predict the crack initiation life and evaluate the damage of beam-to-column welded joints, and can be subsequently used for further investigation of the damage evolution law.


2014 ◽  
Vol 45 (11) ◽  
pp. 5085-5097 ◽  
Author(s):  
Xijia Wu ◽  
Guangchun Quan ◽  
Ryan MacNeil ◽  
Zhong Zhang ◽  
Clayton Sloss

2012 ◽  
Vol 163 ◽  
pp. 86-90
Author(s):  
Yue Feng Li ◽  
Xu Dong Pan ◽  
Guang Lin Wang

Disposable mechanical elements with extremely short lives are widely used in the aerospace and defense fields. To reliably evaluate the life of disposable mechanical elements, many attentions were concentrated in the fatigue properties of disposable mechanical elements. According to the different meanings of static strength for metals, disposable mechanical elements are divided into two groups with different fatigue properties: extremely low cycle fatigue module for Type I with ultimate strength as design stress and low cycle fatigue module for Type II with yield strength as design stress. The Kuroda model and a cumulative damage model consisting of the Miners rule and the sequential law are used in the fatigue design process of the Type I. To the Type II, the Manson-Coffin model is suitable for conventional applications but more attempts are still conducted to further improve stress levels. The Type II with increasing load sequences are specially treated, since the cyclic yield strength of certain materials under pulsating stress closing to the yield strength increase with the deepening of fatigue damage. Consequently, under the increasing pulsating cyclic loading, the later load whose amplitude is higher than the initial yield strength will be permitted.


Author(s):  
Dileep Sivarama Iyer ◽  
Nikhil Chandran Pillai

Abstract Modern day combustors operate at very high temperatures which are close to combustor material softening temperatures. At the same time, to meet stringent emission legislations there is a strong drive to improve upon the rich burn combustor technology or shift to advanced lean burn combustor technologies. One of the key driver to improve emission is to save the cooling air budget and use the saved air for primary combustion but this approach would require more advanced and efficient cooling techniques. Fan shaped effusion cooling technology is a very promising technique as it offers high film cooling effectiveness. However, complex cooling features associated with this technology can lead to higher stress concertation and localized triaxial stress state. This stressstrain field in combination with a typical gas turbine engine operating cycle makes such effusion holes highly vulnerable to the thermo-mechanical fatigue failure. Hence to ensure the safety and reliability of combustor liners with such innovative features, it is essential to have thorough understanding of the stress-strain field in the vicinity and accurate prediction of life to first crack. The biggest challenge the designers and engineers face while predicting the initiation life of a structure is selecting the appropriate fatigue damage model for an application. This is due to following reasons: (a) The scatter in fatigue life predicted using different models and experimental values are very huge (b) There is no general universal method which can predict the multiaxial fatigue life accurately for all the materials and loading conditions (c) No general consensus exits among the researchers on which model have to be used for a particular application, material, loading and geometry (d) Application level studies are seldom available on this subject, most of the studies are restricted to laboratory level specimens with very limited implications to industry. Ideally, the fatigue damage model which has to be used for a particular application has to be validated through experiments. To meet this objective, several test specimens featuring novel fan shaped hole geometries were mass-produced using state of the art laser drilling technology. All these specimens were subjected to strain controlled isothermal low cycle fatigue test and the cycles to crack initiation was monitored using potential drop method. Six different multiaxial fatigue damage models (which can be used in low cycle fatigue regime) viz. Walker model, Smith Watson and Topper model (SWT), Fatemi Socie model (FS), Wang and Brown model (WB), Shang model (SW) and Xu model were selected and the life estimated by these models were compared with the experimental values. From the study it is observed that Xu model in which the damage parameter is built using the concept of shear strain energy looks most promising for this application.


Sign in / Sign up

Export Citation Format

Share Document