Flow-through extraction of oil and gas shales under controlled stress using organic solvents: Implications for organic matter-related porosity and permeability changes with thermal maturity

2016 ◽  
Vol 157 ◽  
pp. 84-99 ◽  
Author(s):  
Daniel Mohnhoff ◽  
Ralf Littke ◽  
Bernhard M. Krooss ◽  
Philipp Weniger
2019 ◽  
Vol 98 ◽  
pp. 02007
Author(s):  
Rustam Mustaev ◽  
Javidan Ismailov ◽  
Uliana Serikova

This paper provides the results of geochemical studies with products of mud volcanoes conducted for a purpose of evaluating the generative potential of the South-Caspian basin. The kerogen types have been identified for different stratigraphic intervals and stages of the organic matter (OM) thermal maturity have been determined. A correlation has been established between the generative potential and the basin deposition and subsidence rate.


2019 ◽  
Vol 7 (4) ◽  
pp. SK45-SK52 ◽  
Author(s):  
Colin MacRitchie ◽  
Mohamed K. Zobaa

Horizontal drilling and multistage fracturing designs have recently made the Wolfcamp shale horizons a highly sought-after and low-cost oil opportunity at a time of market volatility. One current challenge is that the Wolfcamp shale horizons are unpredictable, especially in acreages with limited well control and seismic data. Sedimentary organic matter (palynofacies) analysis can delineate thermal maturity windows, determine kerogen types, and reflect depositional environments to aid in realizing hydrocarbon potential. We palynologically processed 16 samples at roughly 3 m intervals from the upper Wolfcamp section of the Collier-1201 well in Reeves County, Texas. We examined the prepared microscope slides in transmitted light to quantify (point count) and describe the organic facies in each sample. Additionally, we integrated organic geochemical data to corroborate palynofacies analysis. We classified most of the observed organic matter particles as highly degraded phytoclasts with unidentifiable terrestrial palynomorphs. The palynofacies and organic geochemical data indicate a mixed type-II/III kerogen (oil- and gas-prone materials) characterized by substantial terrigenous input. All samples displayed a high degree of thermal maturity from immense overburden as the Delaware Basin subsided and the overlying beds compacted. The lithologic and organic facies of the studied interval reflect fluctuating proximal marine conditions.


2014 ◽  
Vol 84 (11) ◽  
pp. 961-974 ◽  
Author(s):  
K. L. Milliken ◽  
L. T. Ko ◽  
M. Pommer ◽  
K. M. Marsaglia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Muhammad Jawad ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractThis work investigates numerically the solution of Darcy–Forchheimer flow for hybrid nanofluid by employing the slip conditions. Basically, the fluid flow is produced by a swirling disk and is exposed to thermal stratification along with non-linear thermal radiation for controlling the heat transfer of the flow system. In this investigation, the nanoparticles of titanium dioxide and aluminum oxide have been suspended in water as base fluid. Moreover, the Darcy–Forchheimer expression is used to characterize the porous spaces with variable porosity and permeability. The resulting expressions of motion, energy and mass transfer in dimensionless form have been solved by HAM (Homotopy analysis method). In addition, the influence of different emerging factors upon flow system has been disputed both theoretically in graphical form and numerically in the tabular form. During this effort, it has been recognized that velocities profiles augment with growing values of mixed convection parameter while thermal characteristics enhance with augmenting values of radiation parameters. According to the findings, heat is transmitted more quickly in hybrid nanofluid than in traditional nanofluid. Furthermore, it is estimated that the velocities of fluid $$f^{\prime}\left( \xi \right),g\left( \xi \right)$$ f ′ ξ , g ξ are decayed for high values of $$\phi_{1} ,\phi_{2} ,\,Fr$$ ϕ 1 , ϕ 2 , F r and $$k_{1}$$ k 1 factors.


2014 ◽  
Vol 41 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Benoit Lamy-Chappuis ◽  
Doug Angus ◽  
Quentin Fisher ◽  
Carlos Grattoni ◽  
Bruce W. D. Yardley

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050025
Author(s):  
PENG XU ◽  
LIPEI ZHANG ◽  
BINQI RAO ◽  
SHUXIA QIU ◽  
YUQING SHEN ◽  
...  

Hydraulic tortuosity is one of the key parameters for evaluating effective transport properties of natural and artificial porous media. A pore-scale model is developed for fluid flow through porous media based on fractal geometry, and a novel analytical tortuosity–porosity correlation is presented. Numerical simulations are also performed on two-dimensional Sierpinski carpet model. The proposed fractal model is validated by comparison with numerical results and available experimental data. Results show that hydraulic tortuosity depends on both statistical and morphological characteristics of porous media. The exponents for the scaling law between tortuosity and porosity depend on pore size distribution and tortuous fractal dimension. It has been found that hydraulic tortuosity indicates evident anisotropy for asymmetrical particle arrangements under the same statistical characteristics of porous media. The present work may be helpful to understand the transport mechanisms of porous materials and provide guidelines for the development of oil and gas reservoir, water resource and chemical engineering, etc.


2017 ◽  
pp. 34-43
Author(s):  
E. E. Oksenoyd ◽  
V. A. Volkov ◽  
E. V. Oleynik ◽  
G. P. Myasnikova

Based on pyrolytic data (3 995 samples from 208 wells) organic matter types of Bazhenov Formation are identified in the central part of Western Siberian basin. Zones of kerogen types I, II, III and mixed I-II and II-III are mapped. Content of sulfur, paraffins, resins and asphaltenes, viscosity, density, temperature and gas content in oils from Upper Jurassic and Lower Cretaceous sediments (3 806 oil pools) are mapped. Oil gradations are identified and distributed. The alternative model of zones of kerogen II and IIS types is presented. The established distributions of organic matter types can be used in basin modeling and in assessment of oil-and-gas bearing prospects.


2018 ◽  
Vol 36 (3) ◽  
pp. 388-413 ◽  
Author(s):  
Fanghao Xu ◽  
Jiaju Liang ◽  
Guosheng Xu ◽  
Haifeng Yuan ◽  
Yong Liu

The Bohai Bay region is a primary accumulation area of oil and gas in offshore China, in which overpressure commonly occurs in the Paleogene strata; the analysis on distribution characteristics and genetic mechanisms of the overpressure would provide geologic evidences for making plans of well drilling and logging as well as oil and gas exploitation; additionally, it could lay the geological foundation for studying how overpressure controlled hydrocarbon accumulation. Based on research, the overpressure of the study area starts from the second member of the Dongying Formation and ends in the third member of the Shahejie Formation. The distribution of overpressure is mainly controlled by the sag–salient tectonic framework within the basin, which means overpressure mainly develops in sags or slopes; however, high areas stay normal pressured. In the study area, pressure develops around Bozhong Sag and in northern Liaodong Bay reaches the peak. The genetic mechanisms of overpressures in the Paleogene reservoirs are mainly disequilibrium compaction, hydrocarbon generation of the organic matter, fluid charging, and transmission or the superimposition of the former two. Different strata have different genetic mechanisms of overpressure. The chief genetic mechanisms for the generation of overpressure of the Dongying Formation are disequilibrium compaction while the genesis of the formation of overpressure in the Shahejie Formation is more complicated in some extent. The first member of the Shahejie Formation dominated by disequilibrium compaction and hydrocarbon generation of the organic matter plays a supplemental role, while the second member of the Shahejie Formation, as the primary reservoir strata, is dominated by fluid charging and transmission, and the third member of the Shahejie Formation is the main source rock interval; its overpressure is closely related to hydrocarbon generation. Each contribution ratio for overpressure forming by different genetic mechanisms has been judged and figured out quantitatively according to geological, geophysical, and geochemical characteristics of the target strata.


Sign in / Sign up

Export Citation Format

Share Document