scholarly journals Experimental investigation of higher harmonic wave loads and moments on a vertical cylinder by a phase-manipulation method

2020 ◽  
Vol 160 ◽  
pp. 103747
Author(s):  
X. Feng ◽  
P.H. Taylor ◽  
S. Dai ◽  
A.H. Day ◽  
R.H.J. Willden ◽  
...  
2017 ◽  
Vol 833 ◽  
pp. 773-805 ◽  
Author(s):  
T. Kristiansen ◽  
O. M. Faltinsen

The theory of Faltinsen et al. (J. Fluid Mech., vol. 289, 1995, pp. 179–198; FNV) for calculation of higher-order wave loads in deep water on a vertical free-surface-piercing circular bottom-mounted non-moving cylinder, based on potential flow of an incompressible fluid, is generalized to finite water depth. Systematic regular wave experiments are carried out, and the harmonics of the horizontal wave loads are compared with the generalized FNV theory. The horizontal force and mudline overturning moment are studied. The main focus is on the third harmonic of the loads, although all harmonics from one to five are considered. The theoretically predicted third harmonic loads are shown to agree well with the experiments for small to medium wave steepnesses, up to a rather distinct limiting wave steepness. Above this limit, the theory overpredicts, and the discrepancy in general increases monotonically with increasing wave steepness. The local Keulegan–Carpenter ($KC$) number along the axis of the cylinder indicates that flow separation will occur for the wave conditions where there are discrepancies. The assumption of $KC$-dependent added mass coefficients and the addition of a drag term in the FNV model, as is done in Morison’s equation, do not explain the discrepancies. A distinct run-up at the rear of the cylinder is observed in the experiments. A 2D Navier–Stokes simulation is carried out, and the resulting pressure, due to flow separation, is shown to qualitatively explain the local rear run-up.


1978 ◽  
Vol 1 (16) ◽  
pp. 147
Author(s):  
P. Holmes ◽  
J.R. Chaplin

The problem of predicting wave induced loads on cylinders is an enormously complex one. It is clear from the scatter present in most experimental determinations of force coefficients that there are many individual factors which influence the mechanisms of flow induced loading. Among these are some, for instance Reynolds number, separation and periodic vortex shedding, which are inter-related and whose influences cannot be studied in isolation. Others, such as shear flow, irregular waves and free surface effects, can at least be eliminated in the laboratory, in order to approach an understanding of the more fundamental characteristics of the flow. A vertical cylinder in uniform waves experiences an incident flow field which can be described in terms of rotating velocity and acceleration vectors, always in the same vertical plane, containing also the cylinder axis, whose magnitudes are functions of time and of position along the length of the cylinder. Some of the essential features of this flow can be studied under two-dimensional oscillatory conditions, in which either the cylinder or the fluid is oscillated relative to the other along a straight line (planar oscillatory flow). The incident velocity and acceleration vectors are then always concurrent, normal to the cylinder axis, and oscillating in magnitude with time.


2020 ◽  
Vol 8 (8) ◽  
pp. 575
Author(s):  
Sarat Chandra Mohapatra ◽  
Hafizul Islam ◽  
C. Guedes Soares

A mathematical model for the problem of wave diffraction by a floating fixed truncated vertical cylinder is formulated based on Boussinesq equations (BEs). Using Bessel functions in the velocity potentials, the mathematical problem is solved for second-order wave amplitudes by applying a perturbation technique and matching conditions. On the other hand, computational fluid dynamics (CFD) simulation results of normalized free surface elevations and wave heights are compared against experimental fluid data (EFD) and numerical data available in the literature. In order to check the fidelity and accuracy of the Boussinesq model (BM), the results of the second-order super-harmonic wave amplitude around the vertical cylinder are compared with CFD results. The comparison shows a good level of agreement between Boussinesq, CFD, EFD, and numerical data. In addition, wave forces and moments acting on the cylinder and the pressure distribution around the vertical cylinder are analyzed from CFD simulations. Based on analytical solutions, the effects of radius, wave number, water depth, and depth parameters at specific elevations on the second-order sub-harmonic wave amplitudes are analyzed.


Author(s):  
Thomas B. Johannessen

The present paper addresses the challenges associated with applying weakly nonlinear mode-coupled solutions for wave interaction problems to irregular waves with continuous spectra. Unlike the linear solution, the nonlinear solutions will be strongly dependent on cut-off frequency for problems such as the wave elevation itself or loads on a slender cylinder used together with typical ocean wave spectra. It is found that the divergence of the solutions with respect to the cut-off frequency is related to the nonlinear interaction between waves with very different frequencies. This is, in turn, linked to a long standing discussion about the ability of mode-coupled methods to describe the modulation of a short wave due to the presence of a long wave. In cases where nonlinear properties associated with a measured or assumed history of the surface elevation is sought, it is not necessary to calculate accurately the nonlinear evolution of the wave field in space and time. For such cases it is shown that results which are independent of frequency cut-off may be obtained by introducing a maximum bandwidth in frequency between waves which are allowed to interact. It is shown that a suitable bandwidth can be found by applying this method to the problem of back-calculating a linear wave profile from a measured wave profile. In order to verify that this choice of bandwidth is suitable for second and third order terms, nonlinear loads on a slender vertical cylinder are calculated using the FNV method of Faltinsen, Newman, and Vinje (1995, “Nonlinear Wave Loads on a Slender, Vertical Cylinder,” J. Fluid Mech., 289, pp. 179–198). The method is used to compare loads calculated based on measured surface elevations with measurements of loads on two cylinders with different diameters. This comparison indicates that the bandwidth formulation is suitable and that the FNV solution gives a reasonable estimate of loading on slender cylinders. There are, however, loading mechanisms that the FNV solution does not describe, notably the secondary loading cycle first observed by Grue et al. (1993, Higher Harmonic Wave Exciting Forces on a Vertical Cylinder, Institute of Mathematics, University of Oslo, Preprint No. 2). Finally, the method is employed to calculate the ringing response on a large concrete gravity base platform. The base moment response is calculated using the FNV loading on the shafts and linear loads from a standard diffraction code, together with a structural finite element beam model. Comparison with results from a recent model testing campaign shows a remarkable agreement between the present method and the measured response.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
D. Ning ◽  
X. Zhuo ◽  
L. Chen ◽  
B. Teng

The decomposition of a monochromatic wave over a submerged object is investigated numerically in a flume, based on a fully nonlinear HOBEM (higher-order boundary element method) model. Bound and free higher-harmonic waves propagating downstream the structure are discriminated by means of a two-point method. The developed numerical model is verified very well by comparison with the available data. Further numerical experiments are carried out to study the relations between free higher harmonics and wave nonlinearity. It is found that thenth-harmonic wave amplitude is growing proportional to thenth power of the incoming wave amplitude for weakly nonlinear wave condition, but higher-harmonic free wave amplitudes tend to a constant value for strong nonlinear wave condition.


Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
Suresh Rajendran ◽  
C. Guedes Soares

The paper presents an experimental investigation of the first order and second order wave exciting forces acting on a body of simple geometry subjected to long crested irregular waves. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is restrained from moving. Second order spectral analysis is applied to obtain the linear spectra, coherence spectra and cross bi-spectra of both the incident wave elevation and of the horizontal and vertical wave exciting forces. Then the linear and quadratic transfer functions (QTF) of the exciting forces are obtained. The QTF obtained from the analysis of irregular wave measurements are compared with results from experiments in bi-chromatic waves and with numerical predictions from a second order potential flow code.


1974 ◽  
Vol 96 (4) ◽  
pp. 455-458 ◽  
Author(s):  
L. E. Wiles ◽  
J. R. Welty

An experimental investigation of laminar natural convection heat transfer from a uniformly heated vertical cylinder immersed in an effectively infinite pool of mercury is described. A correlation was developed for the local Nusselt number as a function of local modified Grashof number for each cylinder. A single equation incorporating the diameter-to-length ratio was formulated that satisfied the data for all three cylinders. An expression derived by extrapolation of the results to zero curvature (the flat plate condition) was found to agree favorably with others’ work, both analytical and experimental. The influence of curvature upon the heat transfer was found to be small but significant. It was established that the effective thermal resistance through the boundary layer is less for a cylinder of finite curvature than for a flat plate. Consequently, local heat transfer coefficients for cylinders are larger than those for flat plates operating under identical conditions.


Sign in / Sign up

Export Citation Format

Share Document